Properties

Label 1900.2.z
Level 19001900
Weight 22
Character orbit 1900.z
Rep. character χ1900(229,)\chi_{1900}(229,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 184184
Sturm bound 600600

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1900=225219 1900 = 2^{2} \cdot 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1900.z (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 25 25
Character field: Q(ζ10)\Q(\zeta_{10})
Sturm bound: 600600

Dimensions

The following table gives the dimensions of various subspaces of M2(1900,[χ])M_{2}(1900, [\chi]).

Total New Old
Modular forms 1224 184 1040
Cusp forms 1176 184 992
Eisenstein series 48 0 48

Trace form

184q9q5+46q97q11+10q15+5q17+2q19+10q23+15q25+30q278q29+24q3150q33+18q35+20q3720q3910q41+7q45++2q99+O(q100) 184 q - 9 q^{5} + 46 q^{9} - 7 q^{11} + 10 q^{15} + 5 q^{17} + 2 q^{19} + 10 q^{23} + 15 q^{25} + 30 q^{27} - 8 q^{29} + 24 q^{31} - 50 q^{33} + 18 q^{35} + 20 q^{37} - 20 q^{39} - 10 q^{41} + 7 q^{45}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1900,[χ])S_{2}^{\mathrm{new}}(1900, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1900,[χ])S_{2}^{\mathrm{old}}(1900, [\chi]) into lower level spaces

S2old(1900,[χ]) S_{2}^{\mathrm{old}}(1900, [\chi]) \simeq S2new(25,[χ])S_{2}^{\mathrm{new}}(25, [\chi])6^{\oplus 6}\oplusS2new(50,[χ])S_{2}^{\mathrm{new}}(50, [\chi])4^{\oplus 4}\oplusS2new(100,[χ])S_{2}^{\mathrm{new}}(100, [\chi])2^{\oplus 2}\oplusS2new(475,[χ])S_{2}^{\mathrm{new}}(475, [\chi])3^{\oplus 3}\oplusS2new(950,[χ])S_{2}^{\mathrm{new}}(950, [\chi])2^{\oplus 2}