Properties

Label 192.5
Level 192
Weight 5
Dimension 1706
Nonzero newspaces 8
Sturm bound 10240
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(10240\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(192))\).

Total New Old
Modular forms 4240 1750 2490
Cusp forms 3952 1706 2246
Eisenstein series 288 44 244

Trace form

\( 1706 q - 6 q^{3} - 16 q^{4} - 8 q^{6} - 16 q^{7} - 10 q^{9} - 16 q^{10} + 192 q^{11} - 8 q^{12} + 688 q^{13} - 4 q^{15} - 16 q^{16} - 960 q^{17} - 8 q^{18} - 1420 q^{19} + 28 q^{21} + 5312 q^{22} + 2304 q^{23}+ \cdots - 4996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(192))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
192.5.b \(\chi_{192}(31, \cdot)\) 192.5.b.a 4 1
192.5.b.b 4
192.5.b.c 8
192.5.e \(\chi_{192}(65, \cdot)\) 192.5.e.a 1 1
192.5.e.b 1
192.5.e.c 2
192.5.e.d 2
192.5.e.e 4
192.5.e.f 4
192.5.e.g 8
192.5.e.h 8
192.5.g \(\chi_{192}(127, \cdot)\) 192.5.g.a 2 1
192.5.g.b 2
192.5.g.c 4
192.5.g.d 4
192.5.g.e 4
192.5.h \(\chi_{192}(161, \cdot)\) 192.5.h.a 4 1
192.5.h.b 4
192.5.h.c 8
192.5.h.d 16
192.5.i \(\chi_{192}(17, \cdot)\) 192.5.i.a 60 2
192.5.l \(\chi_{192}(79, \cdot)\) 192.5.l.a 32 2
192.5.m \(\chi_{192}(7, \cdot)\) None 0 4
192.5.p \(\chi_{192}(41, \cdot)\) None 0 4
192.5.q \(\chi_{192}(5, \cdot)\) n/a 1008 8
192.5.t \(\chi_{192}(19, \cdot)\) n/a 512 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(192))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(192)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 7}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 1}\)