Defining parameters
Level: | \( N \) | \(=\) | \( 1920 = 2^{7} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1920.bk (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(768\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1920, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 832 | 128 | 704 |
Cusp forms | 704 | 128 | 576 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1920, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1920, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(960, [\chi])\)\(^{\oplus 2}\)