Properties

Label 1920.2.k.c.961.2
Level 19201920
Weight 22
Character 1920.961
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(961,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.961"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.k (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-4,0,-2,0,0,0,0,0,2,0,8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 961.2
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 1920.961
Dual form 1920.2.k.c.961.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq31.00000iq52.00000q71.00000q92.00000iq11+2.00000iq13+1.00000q15+4.00000q17+4.00000iq192.00000iq214.00000q231.00000q251.00000iq27+2.00000iq294.00000q31+2.00000q33+2.00000iq35+2.00000iq372.00000q39+6.00000q41+4.00000iq43+1.00000iq458.00000q473.00000q49+4.00000iq51+10.0000iq532.00000q554.00000q57+6.00000iq59+2.00000q63+2.00000q65+12.0000iq674.00000iq698.00000q716.00000q731.00000iq75+4.00000iq774.00000q79+1.00000q81+16.0000iq834.00000iq852.00000q876.00000q894.00000iq914.00000iq93+4.00000q9514.0000q97+2.00000iq99+O(q100)q+1.00000i q^{3} -1.00000i q^{5} -2.00000 q^{7} -1.00000 q^{9} -2.00000i q^{11} +2.00000i q^{13} +1.00000 q^{15} +4.00000 q^{17} +4.00000i q^{19} -2.00000i q^{21} -4.00000 q^{23} -1.00000 q^{25} -1.00000i q^{27} +2.00000i q^{29} -4.00000 q^{31} +2.00000 q^{33} +2.00000i q^{35} +2.00000i q^{37} -2.00000 q^{39} +6.00000 q^{41} +4.00000i q^{43} +1.00000i q^{45} -8.00000 q^{47} -3.00000 q^{49} +4.00000i q^{51} +10.0000i q^{53} -2.00000 q^{55} -4.00000 q^{57} +6.00000i q^{59} +2.00000 q^{63} +2.00000 q^{65} +12.0000i q^{67} -4.00000i q^{69} -8.00000 q^{71} -6.00000 q^{73} -1.00000i q^{75} +4.00000i q^{77} -4.00000 q^{79} +1.00000 q^{81} +16.0000i q^{83} -4.00000i q^{85} -2.00000 q^{87} -6.00000 q^{89} -4.00000i q^{91} -4.00000i q^{93} +4.00000 q^{95} -14.0000 q^{97} +2.00000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q72q9+2q15+8q178q232q258q31+4q334q39+12q4116q476q494q558q57+4q63+4q6516q7112q73+28q97+O(q100) 2 q - 4 q^{7} - 2 q^{9} + 2 q^{15} + 8 q^{17} - 8 q^{23} - 2 q^{25} - 8 q^{31} + 4 q^{33} - 4 q^{39} + 12 q^{41} - 16 q^{47} - 6 q^{49} - 4 q^{55} - 8 q^{57} + 4 q^{63} + 4 q^{65} - 16 q^{71} - 12 q^{73}+ \cdots - 28 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 11 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.00000i 0.577350i
44 0 0
55 − 1.00000i − 0.447214i
66 0 0
77 −2.00000 −0.755929 −0.377964 0.925820i 0.623376π-0.623376\pi
−0.377964 + 0.925820i 0.623376π0.623376\pi
88 0 0
99 −1.00000 −0.333333
1010 0 0
1111 − 2.00000i − 0.603023i −0.953463 0.301511i 0.902509π-0.902509\pi
0.953463 0.301511i 0.0974911π-0.0974911\pi
1212 0 0
1313 2.00000i 0.554700i 0.960769 + 0.277350i 0.0894562π0.0894562\pi
−0.960769 + 0.277350i 0.910544π0.910544\pi
1414 0 0
1515 1.00000 0.258199
1616 0 0
1717 4.00000 0.970143 0.485071 0.874475i 0.338794π-0.338794\pi
0.485071 + 0.874475i 0.338794π0.338794\pi
1818 0 0
1919 4.00000i 0.917663i 0.888523 + 0.458831i 0.151732π0.151732\pi
−0.888523 + 0.458831i 0.848268π0.848268\pi
2020 0 0
2121 − 2.00000i − 0.436436i
2222 0 0
2323 −4.00000 −0.834058 −0.417029 0.908893i 0.636929π-0.636929\pi
−0.417029 + 0.908893i 0.636929π0.636929\pi
2424 0 0
2525 −1.00000 −0.200000
2626 0 0
2727 − 1.00000i − 0.192450i
2828 0 0
2929 2.00000i 0.371391i 0.982607 + 0.185695i 0.0594537π0.0594537\pi
−0.982607 + 0.185695i 0.940546π0.940546\pi
3030 0 0
3131 −4.00000 −0.718421 −0.359211 0.933257i 0.616954π-0.616954\pi
−0.359211 + 0.933257i 0.616954π0.616954\pi
3232 0 0
3333 2.00000 0.348155
3434 0 0
3535 2.00000i 0.338062i
3636 0 0
3737 2.00000i 0.328798i 0.986394 + 0.164399i 0.0525685π0.0525685\pi
−0.986394 + 0.164399i 0.947432π0.947432\pi
3838 0 0
3939 −2.00000 −0.320256
4040 0 0
4141 6.00000 0.937043 0.468521 0.883452i 0.344787π-0.344787\pi
0.468521 + 0.883452i 0.344787π0.344787\pi
4242 0 0
4343 4.00000i 0.609994i 0.952353 + 0.304997i 0.0986555π0.0986555\pi
−0.952353 + 0.304997i 0.901344π0.901344\pi
4444 0 0
4545 1.00000i 0.149071i
4646 0 0
4747 −8.00000 −1.16692 −0.583460 0.812142i 0.698301π-0.698301\pi
−0.583460 + 0.812142i 0.698301π0.698301\pi
4848 0 0
4949 −3.00000 −0.428571
5050 0 0
5151 4.00000i 0.560112i
5252 0 0
5353 10.0000i 1.37361i 0.726844 + 0.686803i 0.240986π0.240986\pi
−0.726844 + 0.686803i 0.759014π0.759014\pi
5454 0 0
5555 −2.00000 −0.269680
5656 0 0
5757 −4.00000 −0.529813
5858 0 0
5959 6.00000i 0.781133i 0.920575 + 0.390567i 0.127721π0.127721\pi
−0.920575 + 0.390567i 0.872279π0.872279\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 2.00000 0.251976
6464 0 0
6565 2.00000 0.248069
6666 0 0
6767 12.0000i 1.46603i 0.680211 + 0.733017i 0.261888π0.261888\pi
−0.680211 + 0.733017i 0.738112π0.738112\pi
6868 0 0
6969 − 4.00000i − 0.481543i
7070 0 0
7171 −8.00000 −0.949425 −0.474713 0.880141i 0.657448π-0.657448\pi
−0.474713 + 0.880141i 0.657448π0.657448\pi
7272 0 0
7373 −6.00000 −0.702247 −0.351123 0.936329i 0.614200π-0.614200\pi
−0.351123 + 0.936329i 0.614200π0.614200\pi
7474 0 0
7575 − 1.00000i − 0.115470i
7676 0 0
7777 4.00000i 0.455842i
7878 0 0
7979 −4.00000 −0.450035 −0.225018 0.974355i 0.572244π-0.572244\pi
−0.225018 + 0.974355i 0.572244π0.572244\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 16.0000i 1.75623i 0.478451 + 0.878114i 0.341198π0.341198\pi
−0.478451 + 0.878114i 0.658802π0.658802\pi
8484 0 0
8585 − 4.00000i − 0.433861i
8686 0 0
8787 −2.00000 −0.214423
8888 0 0
8989 −6.00000 −0.635999 −0.317999 0.948091i 0.603011π-0.603011\pi
−0.317999 + 0.948091i 0.603011π0.603011\pi
9090 0 0
9191 − 4.00000i − 0.419314i
9292 0 0
9393 − 4.00000i − 0.414781i
9494 0 0
9595 4.00000 0.410391
9696 0 0
9797 −14.0000 −1.42148 −0.710742 0.703452i 0.751641π-0.751641\pi
−0.710742 + 0.703452i 0.751641π0.751641\pi
9898 0 0
9999 2.00000i 0.201008i
100100 0 0
101101 − 2.00000i − 0.199007i −0.995037 0.0995037i 0.968274π-0.968274\pi
0.995037 0.0995037i 0.0317255π-0.0317255\pi
102102 0 0
103103 14.0000 1.37946 0.689730 0.724066i 0.257729π-0.257729\pi
0.689730 + 0.724066i 0.257729π0.257729\pi
104104 0 0
105105 −2.00000 −0.195180
106106 0 0
107107 − 8.00000i − 0.773389i −0.922208 0.386695i 0.873617π-0.873617\pi
0.922208 0.386695i 0.126383π-0.126383\pi
108108 0 0
109109 − 16.0000i − 1.53252i −0.642529 0.766261i 0.722115π-0.722115\pi
0.642529 0.766261i 0.277885π-0.277885\pi
110110 0 0
111111 −2.00000 −0.189832
112112 0 0
113113 16.0000 1.50515 0.752577 0.658505i 0.228811π-0.228811\pi
0.752577 + 0.658505i 0.228811π0.228811\pi
114114 0 0
115115 4.00000i 0.373002i
116116 0 0
117117 − 2.00000i − 0.184900i
118118 0 0
119119 −8.00000 −0.733359
120120 0 0
121121 7.00000 0.636364
122122 0 0
123123 6.00000i 0.541002i
124124 0 0
125125 1.00000i 0.0894427i
126126 0 0
127127 −14.0000 −1.24230 −0.621150 0.783692i 0.713334π-0.713334\pi
−0.621150 + 0.783692i 0.713334π0.713334\pi
128128 0 0
129129 −4.00000 −0.352180
130130 0 0
131131 6.00000i 0.524222i 0.965038 + 0.262111i 0.0844187π0.0844187\pi
−0.965038 + 0.262111i 0.915581π0.915581\pi
132132 0 0
133133 − 8.00000i − 0.693688i
134134 0 0
135135 −1.00000 −0.0860663
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 − 16.0000i − 1.35710i −0.734553 0.678551i 0.762608π-0.762608\pi
0.734553 0.678551i 0.237392π-0.237392\pi
140140 0 0
141141 − 8.00000i − 0.673722i
142142 0 0
143143 4.00000 0.334497
144144 0 0
145145 2.00000 0.166091
146146 0 0
147147 − 3.00000i − 0.247436i
148148 0 0
149149 18.0000i 1.47462i 0.675556 + 0.737309i 0.263904π0.263904\pi
−0.675556 + 0.737309i 0.736096π0.736096\pi
150150 0 0
151151 −24.0000 −1.95309 −0.976546 0.215308i 0.930924π-0.930924\pi
−0.976546 + 0.215308i 0.930924π0.930924\pi
152152 0 0
153153 −4.00000 −0.323381
154154 0 0
155155 4.00000i 0.321288i
156156 0 0
157157 10.0000i 0.798087i 0.916932 + 0.399043i 0.130658π0.130658\pi
−0.916932 + 0.399043i 0.869342π0.869342\pi
158158 0 0
159159 −10.0000 −0.793052
160160 0 0
161161 8.00000 0.630488
162162 0 0
163163 20.0000i 1.56652i 0.621694 + 0.783260i 0.286445π0.286445\pi
−0.621694 + 0.783260i 0.713555π0.713555\pi
164164 0 0
165165 − 2.00000i − 0.155700i
166166 0 0
167167 12.0000 0.928588 0.464294 0.885681i 0.346308π-0.346308\pi
0.464294 + 0.885681i 0.346308π0.346308\pi
168168 0 0
169169 9.00000 0.692308
170170 0 0
171171 − 4.00000i − 0.305888i
172172 0 0
173173 − 6.00000i − 0.456172i −0.973641 0.228086i 0.926753π-0.926753\pi
0.973641 0.228086i 0.0732467π-0.0732467\pi
174174 0 0
175175 2.00000 0.151186
176176 0 0
177177 −6.00000 −0.450988
178178 0 0
179179 10.0000i 0.747435i 0.927543 + 0.373718i 0.121917π0.121917\pi
−0.927543 + 0.373718i 0.878083π0.878083\pi
180180 0 0
181181 − 8.00000i − 0.594635i −0.954779 0.297318i 0.903908π-0.903908\pi
0.954779 0.297318i 0.0960920π-0.0960920\pi
182182 0 0
183183 0 0
184184 0 0
185185 2.00000 0.147043
186186 0 0
187187 − 8.00000i − 0.585018i
188188 0 0
189189 2.00000i 0.145479i
190190 0 0
191191 −8.00000 −0.578860 −0.289430 0.957199i 0.593466π-0.593466\pi
−0.289430 + 0.957199i 0.593466π0.593466\pi
192192 0 0
193193 −18.0000 −1.29567 −0.647834 0.761781i 0.724325π-0.724325\pi
−0.647834 + 0.761781i 0.724325π0.724325\pi
194194 0 0
195195 2.00000i 0.143223i
196196 0 0
197197 6.00000i 0.427482i 0.976890 + 0.213741i 0.0685649π0.0685649\pi
−0.976890 + 0.213741i 0.931435π0.931435\pi
198198 0 0
199199 8.00000 0.567105 0.283552 0.958957i 0.408487π-0.408487\pi
0.283552 + 0.958957i 0.408487π0.408487\pi
200200 0 0
201201 −12.0000 −0.846415
202202 0 0
203203 − 4.00000i − 0.280745i
204204 0 0
205205 − 6.00000i − 0.419058i
206206 0 0
207207 4.00000 0.278019
208208 0 0
209209 8.00000 0.553372
210210 0 0
211211 − 8.00000i − 0.550743i −0.961338 0.275371i 0.911199π-0.911199\pi
0.961338 0.275371i 0.0888008π-0.0888008\pi
212212 0 0
213213 − 8.00000i − 0.548151i
214214 0 0
215215 4.00000 0.272798
216216 0 0
217217 8.00000 0.543075
218218 0 0
219219 − 6.00000i − 0.405442i
220220 0 0
221221 8.00000i 0.538138i
222222 0 0
223223 2.00000 0.133930 0.0669650 0.997755i 0.478668π-0.478668\pi
0.0669650 + 0.997755i 0.478668π0.478668\pi
224224 0 0
225225 1.00000 0.0666667
226226 0 0
227227 4.00000i 0.265489i 0.991150 + 0.132745i 0.0423790π0.0423790\pi
−0.991150 + 0.132745i 0.957621π0.957621\pi
228228 0 0
229229 4.00000i 0.264327i 0.991228 + 0.132164i 0.0421925π0.0421925\pi
−0.991228 + 0.132164i 0.957808π0.957808\pi
230230 0 0
231231 −4.00000 −0.263181
232232 0 0
233233 4.00000 0.262049 0.131024 0.991379i 0.458173π-0.458173\pi
0.131024 + 0.991379i 0.458173π0.458173\pi
234234 0 0
235235 8.00000i 0.521862i
236236 0 0
237237 − 4.00000i − 0.259828i
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 −26.0000 −1.67481 −0.837404 0.546585i 0.815928π-0.815928\pi
−0.837404 + 0.546585i 0.815928π0.815928\pi
242242 0 0
243243 1.00000i 0.0641500i
244244 0 0
245245 3.00000i 0.191663i
246246 0 0
247247 −8.00000 −0.509028
248248 0 0
249249 −16.0000 −1.01396
250250 0 0
251251 − 30.0000i − 1.89358i −0.321847 0.946792i 0.604304π-0.604304\pi
0.321847 0.946792i 0.395696π-0.395696\pi
252252 0 0
253253 8.00000i 0.502956i
254254 0 0
255255 4.00000 0.250490
256256 0 0
257257 8.00000 0.499026 0.249513 0.968371i 0.419729π-0.419729\pi
0.249513 + 0.968371i 0.419729π0.419729\pi
258258 0 0
259259 − 4.00000i − 0.248548i
260260 0 0
261261 − 2.00000i − 0.123797i
262262 0 0
263263 28.0000 1.72655 0.863277 0.504730i 0.168408π-0.168408\pi
0.863277 + 0.504730i 0.168408π0.168408\pi
264264 0 0
265265 10.0000 0.614295
266266 0 0
267267 − 6.00000i − 0.367194i
268268 0 0
269269 18.0000i 1.09748i 0.835993 + 0.548740i 0.184892π0.184892\pi
−0.835993 + 0.548740i 0.815108π0.815108\pi
270270 0 0
271271 24.0000 1.45790 0.728948 0.684569i 0.240010π-0.240010\pi
0.728948 + 0.684569i 0.240010π0.240010\pi
272272 0 0
273273 4.00000 0.242091
274274 0 0
275275 2.00000i 0.120605i
276276 0 0
277277 − 22.0000i − 1.32185i −0.750451 0.660926i 0.770164π-0.770164\pi
0.750451 0.660926i 0.229836π-0.229836\pi
278278 0 0
279279 4.00000 0.239474
280280 0 0
281281 18.0000 1.07379 0.536895 0.843649i 0.319597π-0.319597\pi
0.536895 + 0.843649i 0.319597π0.319597\pi
282282 0 0
283283 4.00000i 0.237775i 0.992908 + 0.118888i 0.0379328π0.0379328\pi
−0.992908 + 0.118888i 0.962067π0.962067\pi
284284 0 0
285285 4.00000i 0.236940i
286286 0 0
287287 −12.0000 −0.708338
288288 0 0
289289 −1.00000 −0.0588235
290290 0 0
291291 − 14.0000i − 0.820695i
292292 0 0
293293 6.00000i 0.350524i 0.984522 + 0.175262i 0.0560772π0.0560772\pi
−0.984522 + 0.175262i 0.943923π0.943923\pi
294294 0 0
295295 6.00000 0.349334
296296 0 0
297297 −2.00000 −0.116052
298298 0 0
299299 − 8.00000i − 0.462652i
300300 0 0
301301 − 8.00000i − 0.461112i
302302 0 0
303303 2.00000 0.114897
304304 0 0
305305 0 0
306306 0 0
307307 − 12.0000i − 0.684876i −0.939540 0.342438i 0.888747π-0.888747\pi
0.939540 0.342438i 0.111253π-0.111253\pi
308308 0 0
309309 14.0000i 0.796432i
310310 0 0
311311 −32.0000 −1.81455 −0.907277 0.420534i 0.861843π-0.861843\pi
−0.907277 + 0.420534i 0.861843π0.861843\pi
312312 0 0
313313 2.00000 0.113047 0.0565233 0.998401i 0.481998π-0.481998\pi
0.0565233 + 0.998401i 0.481998π0.481998\pi
314314 0 0
315315 − 2.00000i − 0.112687i
316316 0 0
317317 34.0000i 1.90963i 0.297200 + 0.954815i 0.403947π0.403947\pi
−0.297200 + 0.954815i 0.596053π0.596053\pi
318318 0 0
319319 4.00000 0.223957
320320 0 0
321321 8.00000 0.446516
322322 0 0
323323 16.0000i 0.890264i
324324 0 0
325325 − 2.00000i − 0.110940i
326326 0 0
327327 16.0000 0.884802
328328 0 0
329329 16.0000 0.882109
330330 0 0
331331 − 20.0000i − 1.09930i −0.835395 0.549650i 0.814761π-0.814761\pi
0.835395 0.549650i 0.185239π-0.185239\pi
332332 0 0
333333 − 2.00000i − 0.109599i
334334 0 0
335335 12.0000 0.655630
336336 0 0
337337 −10.0000 −0.544735 −0.272367 0.962193i 0.587807π-0.587807\pi
−0.272367 + 0.962193i 0.587807π0.587807\pi
338338 0 0
339339 16.0000i 0.869001i
340340 0 0
341341 8.00000i 0.433224i
342342 0 0
343343 20.0000 1.07990
344344 0 0
345345 −4.00000 −0.215353
346346 0 0
347347 − 12.0000i − 0.644194i −0.946707 0.322097i 0.895612π-0.895612\pi
0.946707 0.322097i 0.104388π-0.104388\pi
348348 0 0
349349 − 16.0000i − 0.856460i −0.903670 0.428230i 0.859137π-0.859137\pi
0.903670 0.428230i 0.140863π-0.140863\pi
350350 0 0
351351 2.00000 0.106752
352352 0 0
353353 4.00000 0.212899 0.106449 0.994318i 0.466052π-0.466052\pi
0.106449 + 0.994318i 0.466052π0.466052\pi
354354 0 0
355355 8.00000i 0.424596i
356356 0 0
357357 − 8.00000i − 0.423405i
358358 0 0
359359 24.0000 1.26667 0.633336 0.773877i 0.281685π-0.281685\pi
0.633336 + 0.773877i 0.281685π0.281685\pi
360360 0 0
361361 3.00000 0.157895
362362 0 0
363363 7.00000i 0.367405i
364364 0 0
365365 6.00000i 0.314054i
366366 0 0
367367 −6.00000 −0.313197 −0.156599 0.987662i 0.550053π-0.550053\pi
−0.156599 + 0.987662i 0.550053π0.550053\pi
368368 0 0
369369 −6.00000 −0.312348
370370 0 0
371371 − 20.0000i − 1.03835i
372372 0 0
373373 14.0000i 0.724893i 0.932005 + 0.362446i 0.118058π0.118058\pi
−0.932005 + 0.362446i 0.881942π0.881942\pi
374374 0 0
375375 −1.00000 −0.0516398
376376 0 0
377377 −4.00000 −0.206010
378378 0 0
379379 − 8.00000i − 0.410932i −0.978664 0.205466i 0.934129π-0.934129\pi
0.978664 0.205466i 0.0658711π-0.0658711\pi
380380 0 0
381381 − 14.0000i − 0.717242i
382382 0 0
383383 32.0000 1.63512 0.817562 0.575841i 0.195325π-0.195325\pi
0.817562 + 0.575841i 0.195325π0.195325\pi
384384 0 0
385385 4.00000 0.203859
386386 0 0
387387 − 4.00000i − 0.203331i
388388 0 0
389389 2.00000i 0.101404i 0.998714 + 0.0507020i 0.0161459π0.0161459\pi
−0.998714 + 0.0507020i 0.983854π0.983854\pi
390390 0 0
391391 −16.0000 −0.809155
392392 0 0
393393 −6.00000 −0.302660
394394 0 0
395395 4.00000i 0.201262i
396396 0 0
397397 − 10.0000i − 0.501886i −0.968002 0.250943i 0.919259π-0.919259\pi
0.968002 0.250943i 0.0807406π-0.0807406\pi
398398 0 0
399399 8.00000 0.400501
400400 0 0
401401 14.0000 0.699127 0.349563 0.936913i 0.386330π-0.386330\pi
0.349563 + 0.936913i 0.386330π0.386330\pi
402402 0 0
403403 − 8.00000i − 0.398508i
404404 0 0
405405 − 1.00000i − 0.0496904i
406406 0 0
407407 4.00000 0.198273
408408 0 0
409409 38.0000 1.87898 0.939490 0.342578i 0.111300π-0.111300\pi
0.939490 + 0.342578i 0.111300π0.111300\pi
410410 0 0
411411 0 0
412412 0 0
413413 − 12.0000i − 0.590481i
414414 0 0
415415 16.0000 0.785409
416416 0 0
417417 16.0000 0.783523
418418 0 0
419419 − 34.0000i − 1.66101i −0.557012 0.830504i 0.688052π-0.688052\pi
0.557012 0.830504i 0.311948π-0.311948\pi
420420 0 0
421421 20.0000i 0.974740i 0.873195 + 0.487370i 0.162044π0.162044\pi
−0.873195 + 0.487370i 0.837956π0.837956\pi
422422 0 0
423423 8.00000 0.388973
424424 0 0
425425 −4.00000 −0.194029
426426 0 0
427427 0 0
428428 0 0
429429 4.00000i 0.193122i
430430 0 0
431431 24.0000 1.15604 0.578020 0.816023i 0.303826π-0.303826\pi
0.578020 + 0.816023i 0.303826π0.303826\pi
432432 0 0
433433 −34.0000 −1.63394 −0.816968 0.576683i 0.804347π-0.804347\pi
−0.816968 + 0.576683i 0.804347π0.804347\pi
434434 0 0
435435 2.00000i 0.0958927i
436436 0 0
437437 − 16.0000i − 0.765384i
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 3.00000 0.142857
442442 0 0
443443 12.0000i 0.570137i 0.958507 + 0.285069i 0.0920164π0.0920164\pi
−0.958507 + 0.285069i 0.907984π0.907984\pi
444444 0 0
445445 6.00000i 0.284427i
446446 0 0
447447 −18.0000 −0.851371
448448 0 0
449449 14.0000 0.660701 0.330350 0.943858i 0.392833π-0.392833\pi
0.330350 + 0.943858i 0.392833π0.392833\pi
450450 0 0
451451 − 12.0000i − 0.565058i
452452 0 0
453453 − 24.0000i − 1.12762i
454454 0 0
455455 −4.00000 −0.187523
456456 0 0
457457 −2.00000 −0.0935561 −0.0467780 0.998905i 0.514895π-0.514895\pi
−0.0467780 + 0.998905i 0.514895π0.514895\pi
458458 0 0
459459 − 4.00000i − 0.186704i
460460 0 0
461461 6.00000i 0.279448i 0.990190 + 0.139724i 0.0446215π0.0446215\pi
−0.990190 + 0.139724i 0.955378π0.955378\pi
462462 0 0
463463 38.0000 1.76601 0.883005 0.469364i 0.155517π-0.155517\pi
0.883005 + 0.469364i 0.155517π0.155517\pi
464464 0 0
465465 −4.00000 −0.185496
466466 0 0
467467 − 24.0000i − 1.11059i −0.831654 0.555294i 0.812606π-0.812606\pi
0.831654 0.555294i 0.187394π-0.187394\pi
468468 0 0
469469 − 24.0000i − 1.10822i
470470 0 0
471471 −10.0000 −0.460776
472472 0 0
473473 8.00000 0.367840
474474 0 0
475475 − 4.00000i − 0.183533i
476476 0 0
477477 − 10.0000i − 0.457869i
478478 0 0
479479 −32.0000 −1.46212 −0.731059 0.682315i 0.760973π-0.760973\pi
−0.731059 + 0.682315i 0.760973π0.760973\pi
480480 0 0
481481 −4.00000 −0.182384
482482 0 0
483483 8.00000i 0.364013i
484484 0 0
485485 14.0000i 0.635707i
486486 0 0
487487 26.0000 1.17817 0.589086 0.808070i 0.299488π-0.299488\pi
0.589086 + 0.808070i 0.299488π0.299488\pi
488488 0 0
489489 −20.0000 −0.904431
490490 0 0
491491 − 6.00000i − 0.270776i −0.990793 0.135388i 0.956772π-0.956772\pi
0.990793 0.135388i 0.0432281π-0.0432281\pi
492492 0 0
493493 8.00000i 0.360302i
494494 0 0
495495 2.00000 0.0898933
496496 0 0
497497 16.0000 0.717698
498498 0 0
499499 4.00000i 0.179065i 0.995984 + 0.0895323i 0.0285372π0.0285372\pi
−0.995984 + 0.0895323i 0.971463π0.971463\pi
500500 0 0
501501 12.0000i 0.536120i
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 −2.00000 −0.0889988
506506 0 0
507507 9.00000i 0.399704i
508508 0 0
509509 − 6.00000i − 0.265945i −0.991120 0.132973i 0.957548π-0.957548\pi
0.991120 0.132973i 0.0424523π-0.0424523\pi
510510 0 0
511511 12.0000 0.530849
512512 0 0
513513 4.00000 0.176604
514514 0 0
515515 − 14.0000i − 0.616914i
516516 0 0
517517 16.0000i 0.703679i
518518 0 0
519519 6.00000 0.263371
520520 0 0
521521 −30.0000 −1.31432 −0.657162 0.753749i 0.728243π-0.728243\pi
−0.657162 + 0.753749i 0.728243π0.728243\pi
522522 0 0
523523 20.0000i 0.874539i 0.899331 + 0.437269i 0.144054π0.144054\pi
−0.899331 + 0.437269i 0.855946π0.855946\pi
524524 0 0
525525 2.00000i 0.0872872i
526526 0 0
527527 −16.0000 −0.696971
528528 0 0
529529 −7.00000 −0.304348
530530 0 0
531531 − 6.00000i − 0.260378i
532532 0 0
533533 12.0000i 0.519778i
534534 0 0
535535 −8.00000 −0.345870
536536 0 0
537537 −10.0000 −0.431532
538538 0 0
539539 6.00000i 0.258438i
540540 0 0
541541 − 8.00000i − 0.343947i −0.985102 0.171973i 0.944986π-0.944986\pi
0.985102 0.171973i 0.0550143π-0.0550143\pi
542542 0 0
543543 8.00000 0.343313
544544 0 0
545545 −16.0000 −0.685365
546546 0 0
547547 − 36.0000i − 1.53925i −0.638497 0.769624i 0.720443π-0.720443\pi
0.638497 0.769624i 0.279557π-0.279557\pi
548548 0 0
549549 0 0
550550 0 0
551551 −8.00000 −0.340811
552552 0 0
553553 8.00000 0.340195
554554 0 0
555555 2.00000i 0.0848953i
556556 0 0
557557 2.00000i 0.0847427i 0.999102 + 0.0423714i 0.0134913π0.0134913\pi
−0.999102 + 0.0423714i 0.986509π0.986509\pi
558558 0 0
559559 −8.00000 −0.338364
560560 0 0
561561 8.00000 0.337760
562562 0 0
563563 12.0000i 0.505740i 0.967500 + 0.252870i 0.0813744π0.0813744\pi
−0.967500 + 0.252870i 0.918626π0.918626\pi
564564 0 0
565565 − 16.0000i − 0.673125i
566566 0 0
567567 −2.00000 −0.0839921
568568 0 0
569569 −38.0000 −1.59304 −0.796521 0.604610i 0.793329π-0.793329\pi
−0.796521 + 0.604610i 0.793329π0.793329\pi
570570 0 0
571571 − 20.0000i − 0.836974i −0.908223 0.418487i 0.862561π-0.862561\pi
0.908223 0.418487i 0.137439π-0.137439\pi
572572 0 0
573573 − 8.00000i − 0.334205i
574574 0 0
575575 4.00000 0.166812
576576 0 0
577577 −6.00000 −0.249783 −0.124892 0.992170i 0.539858π-0.539858\pi
−0.124892 + 0.992170i 0.539858π0.539858\pi
578578 0 0
579579 − 18.0000i − 0.748054i
580580 0 0
581581 − 32.0000i − 1.32758i
582582 0 0
583583 20.0000 0.828315
584584 0 0
585585 −2.00000 −0.0826898
586586 0 0
587587 − 8.00000i − 0.330195i −0.986277 0.165098i 0.947206π-0.947206\pi
0.986277 0.165098i 0.0527939π-0.0527939\pi
588588 0 0
589589 − 16.0000i − 0.659269i
590590 0 0
591591 −6.00000 −0.246807
592592 0 0
593593 24.0000 0.985562 0.492781 0.870153i 0.335980π-0.335980\pi
0.492781 + 0.870153i 0.335980π0.335980\pi
594594 0 0
595595 8.00000i 0.327968i
596596 0 0
597597 8.00000i 0.327418i
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −38.0000 −1.55005 −0.775026 0.631929i 0.782263π-0.782263\pi
−0.775026 + 0.631929i 0.782263π0.782263\pi
602602 0 0
603603 − 12.0000i − 0.488678i
604604 0 0
605605 − 7.00000i − 0.284590i
606606 0 0
607607 −34.0000 −1.38002 −0.690009 0.723801i 0.742393π-0.742393\pi
−0.690009 + 0.723801i 0.742393π0.742393\pi
608608 0 0
609609 4.00000 0.162088
610610 0 0
611611 − 16.0000i − 0.647291i
612612 0 0
613613 42.0000i 1.69636i 0.529705 + 0.848182i 0.322303π0.322303\pi
−0.529705 + 0.848182i 0.677697π0.677697\pi
614614 0 0
615615 6.00000 0.241943
616616 0 0
617617 −4.00000 −0.161034 −0.0805170 0.996753i 0.525657π-0.525657\pi
−0.0805170 + 0.996753i 0.525657π0.525657\pi
618618 0 0
619619 8.00000i 0.321547i 0.986991 + 0.160774i 0.0513989π0.0513989\pi
−0.986991 + 0.160774i 0.948601π0.948601\pi
620620 0 0
621621 4.00000i 0.160514i
622622 0 0
623623 12.0000 0.480770
624624 0 0
625625 1.00000 0.0400000
626626 0 0
627627 8.00000i 0.319489i
628628 0 0
629629 8.00000i 0.318981i
630630 0 0
631631 −44.0000 −1.75161 −0.875806 0.482663i 0.839670π-0.839670\pi
−0.875806 + 0.482663i 0.839670π0.839670\pi
632632 0 0
633633 8.00000 0.317971
634634 0 0
635635 14.0000i 0.555573i
636636 0 0
637637 − 6.00000i − 0.237729i
638638 0 0
639639 8.00000 0.316475
640640 0 0
641641 18.0000 0.710957 0.355479 0.934684i 0.384318π-0.384318\pi
0.355479 + 0.934684i 0.384318π0.384318\pi
642642 0 0
643643 12.0000i 0.473234i 0.971603 + 0.236617i 0.0760386π0.0760386\pi
−0.971603 + 0.236617i 0.923961π0.923961\pi
644644 0 0
645645 4.00000i 0.157500i
646646 0 0
647647 24.0000 0.943537 0.471769 0.881722i 0.343616π-0.343616\pi
0.471769 + 0.881722i 0.343616π0.343616\pi
648648 0 0
649649 12.0000 0.471041
650650 0 0
651651 8.00000i 0.313545i
652652 0 0
653653 − 34.0000i − 1.33052i −0.746611 0.665261i 0.768320π-0.768320\pi
0.746611 0.665261i 0.231680π-0.231680\pi
654654 0 0
655655 6.00000 0.234439
656656 0 0
657657 6.00000 0.234082
658658 0 0
659659 − 18.0000i − 0.701180i −0.936529 0.350590i 0.885981π-0.885981\pi
0.936529 0.350590i 0.114019π-0.114019\pi
660660 0 0
661661 32.0000i 1.24466i 0.782757 + 0.622328i 0.213813π0.213813\pi
−0.782757 + 0.622328i 0.786187π0.786187\pi
662662 0 0
663663 −8.00000 −0.310694
664664 0 0
665665 −8.00000 −0.310227
666666 0 0
667667 − 8.00000i − 0.309761i
668668 0 0
669669 2.00000i 0.0773245i
670670 0 0
671671 0 0
672672 0 0
673673 −34.0000 −1.31060 −0.655302 0.755367i 0.727459π-0.727459\pi
−0.655302 + 0.755367i 0.727459π0.727459\pi
674674 0 0
675675 1.00000i 0.0384900i
676676 0 0
677677 − 22.0000i − 0.845529i −0.906240 0.422764i 0.861060π-0.861060\pi
0.906240 0.422764i 0.138940π-0.138940\pi
678678 0 0
679679 28.0000 1.07454
680680 0 0
681681 −4.00000 −0.153280
682682 0 0
683683 40.0000i 1.53056i 0.643699 + 0.765279i 0.277399π0.277399\pi
−0.643699 + 0.765279i 0.722601π0.722601\pi
684684 0 0
685685 0 0
686686 0 0
687687 −4.00000 −0.152610
688688 0 0
689689 −20.0000 −0.761939
690690 0 0
691691 − 20.0000i − 0.760836i −0.924815 0.380418i 0.875780π-0.875780\pi
0.924815 0.380418i 0.124220π-0.124220\pi
692692 0 0
693693 − 4.00000i − 0.151947i
694694 0 0
695695 −16.0000 −0.606915
696696 0 0
697697 24.0000 0.909065
698698 0 0
699699 4.00000i 0.151294i
700700 0 0
701701 34.0000i 1.28416i 0.766637 + 0.642081i 0.221929π0.221929\pi
−0.766637 + 0.642081i 0.778071π0.778071\pi
702702 0 0
703703 −8.00000 −0.301726
704704 0 0
705705 −8.00000 −0.301297
706706 0 0
707707 4.00000i 0.150435i
708708 0 0
709709 − 52.0000i − 1.95290i −0.215742 0.976450i 0.569217π-0.569217\pi
0.215742 0.976450i 0.430783π-0.430783\pi
710710 0 0
711711 4.00000 0.150012
712712 0 0
713713 16.0000 0.599205
714714 0 0
715715 − 4.00000i − 0.149592i
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 −28.0000 −1.04277
722722 0 0
723723 − 26.0000i − 0.966950i
724724 0 0
725725 − 2.00000i − 0.0742781i
726726 0 0
727727 26.0000 0.964287 0.482143 0.876092i 0.339858π-0.339858\pi
0.482143 + 0.876092i 0.339858π0.339858\pi
728728 0 0
729729 −1.00000 −0.0370370
730730 0 0
731731 16.0000i 0.591781i
732732 0 0
733733 46.0000i 1.69905i 0.527549 + 0.849524i 0.323111π0.323111\pi
−0.527549 + 0.849524i 0.676889π0.676889\pi
734734 0 0
735735 −3.00000 −0.110657
736736 0 0
737737 24.0000 0.884051
738738 0 0
739739 − 4.00000i − 0.147142i −0.997290 0.0735712i 0.976560π-0.976560\pi
0.997290 0.0735712i 0.0234396π-0.0234396\pi
740740 0 0
741741 − 8.00000i − 0.293887i
742742 0 0
743743 32.0000 1.17397 0.586983 0.809599i 0.300316π-0.300316\pi
0.586983 + 0.809599i 0.300316π0.300316\pi
744744 0 0
745745 18.0000 0.659469
746746 0 0
747747 − 16.0000i − 0.585409i
748748 0 0
749749 16.0000i 0.584627i
750750 0 0
751751 −28.0000 −1.02173 −0.510867 0.859660i 0.670676π-0.670676\pi
−0.510867 + 0.859660i 0.670676π0.670676\pi
752752 0 0
753753 30.0000 1.09326
754754 0 0
755755 24.0000i 0.873449i
756756 0 0
757757 − 6.00000i − 0.218074i −0.994038 0.109037i 0.965223π-0.965223\pi
0.994038 0.109037i 0.0347767π-0.0347767\pi
758758 0 0
759759 −8.00000 −0.290382
760760 0 0
761761 −14.0000 −0.507500 −0.253750 0.967270i 0.581664π-0.581664\pi
−0.253750 + 0.967270i 0.581664π0.581664\pi
762762 0 0
763763 32.0000i 1.15848i
764764 0 0
765765 4.00000i 0.144620i
766766 0 0
767767 −12.0000 −0.433295
768768 0 0
769769 34.0000 1.22607 0.613036 0.790055i 0.289948π-0.289948\pi
0.613036 + 0.790055i 0.289948π0.289948\pi
770770 0 0
771771 8.00000i 0.288113i
772772 0 0
773773 − 10.0000i − 0.359675i −0.983696 0.179838i 0.942443π-0.942443\pi
0.983696 0.179838i 0.0575572π-0.0575572\pi
774774 0 0
775775 4.00000 0.143684
776776 0 0
777777 4.00000 0.143499
778778 0 0
779779 24.0000i 0.859889i
780780 0 0
781781 16.0000i 0.572525i
782782 0 0
783783 2.00000 0.0714742
784784 0 0
785785 10.0000 0.356915
786786 0 0
787787 12.0000i 0.427754i 0.976861 + 0.213877i 0.0686091π0.0686091\pi
−0.976861 + 0.213877i 0.931391π0.931391\pi
788788 0 0
789789 28.0000i 0.996826i
790790 0 0
791791 −32.0000 −1.13779
792792 0 0
793793 0 0
794794 0 0
795795 10.0000i 0.354663i
796796 0 0
797797 − 38.0000i − 1.34603i −0.739629 0.673015i 0.764999π-0.764999\pi
0.739629 0.673015i 0.235001π-0.235001\pi
798798 0 0
799799 −32.0000 −1.13208
800800 0 0
801801 6.00000 0.212000
802802 0 0
803803 12.0000i 0.423471i
804804 0 0
805805 − 8.00000i − 0.281963i
806806 0 0
807807 −18.0000 −0.633630
808808 0 0
809809 −34.0000 −1.19538 −0.597688 0.801729i 0.703914π-0.703914\pi
−0.597688 + 0.801729i 0.703914π0.703914\pi
810810 0 0
811811 40.0000i 1.40459i 0.711886 + 0.702295i 0.247841π0.247841\pi
−0.711886 + 0.702295i 0.752159π0.752159\pi
812812 0 0
813813 24.0000i 0.841717i
814814 0 0
815815 20.0000 0.700569
816816 0 0
817817 −16.0000 −0.559769
818818 0 0
819819 4.00000i 0.139771i
820820 0 0
821821 − 18.0000i − 0.628204i −0.949389 0.314102i 0.898297π-0.898297\pi
0.949389 0.314102i 0.101703π-0.101703\pi
822822 0 0
823823 −38.0000 −1.32460 −0.662298 0.749240i 0.730419π-0.730419\pi
−0.662298 + 0.749240i 0.730419π0.730419\pi
824824 0 0
825825 −2.00000 −0.0696311
826826 0 0
827827 28.0000i 0.973655i 0.873498 + 0.486828i 0.161846π0.161846\pi
−0.873498 + 0.486828i 0.838154π0.838154\pi
828828 0 0
829829 − 16.0000i − 0.555703i −0.960624 0.277851i 0.910378π-0.910378\pi
0.960624 0.277851i 0.0896223π-0.0896223\pi
830830 0 0
831831 22.0000 0.763172
832832 0 0
833833 −12.0000 −0.415775
834834 0 0
835835 − 12.0000i − 0.415277i
836836 0 0
837837 4.00000i 0.138260i
838838 0 0
839839 24.0000 0.828572 0.414286 0.910147i 0.364031π-0.364031\pi
0.414286 + 0.910147i 0.364031π0.364031\pi
840840 0 0
841841 25.0000 0.862069
842842 0 0
843843 18.0000i 0.619953i
844844 0 0
845845 − 9.00000i − 0.309609i
846846 0 0
847847 −14.0000 −0.481046
848848 0 0
849849 −4.00000 −0.137280
850850 0 0
851851 − 8.00000i − 0.274236i
852852 0 0
853853 − 46.0000i − 1.57501i −0.616308 0.787505i 0.711372π-0.711372\pi
0.616308 0.787505i 0.288628π-0.288628\pi
854854 0 0
855855 −4.00000 −0.136797
856856 0 0
857857 20.0000 0.683187 0.341593 0.939848i 0.389033π-0.389033\pi
0.341593 + 0.939848i 0.389033π0.389033\pi
858858 0 0
859859 56.0000i 1.91070i 0.295484 + 0.955348i 0.404519π0.404519\pi
−0.295484 + 0.955348i 0.595481π0.595481\pi
860860 0 0
861861 − 12.0000i − 0.408959i
862862 0 0
863863 −44.0000 −1.49778 −0.748889 0.662696i 0.769412π-0.769412\pi
−0.748889 + 0.662696i 0.769412π0.769412\pi
864864 0 0
865865 −6.00000 −0.204006
866866 0 0
867867 − 1.00000i − 0.0339618i
868868 0 0
869869 8.00000i 0.271381i
870870 0 0
871871 −24.0000 −0.813209
872872 0 0
873873 14.0000 0.473828
874874 0 0
875875 − 2.00000i − 0.0676123i
876876 0 0
877877 2.00000i 0.0675352i 0.999430 + 0.0337676i 0.0107506π0.0107506\pi
−0.999430 + 0.0337676i 0.989249π0.989249\pi
878878 0 0
879879 −6.00000 −0.202375
880880 0 0
881881 −2.00000 −0.0673817 −0.0336909 0.999432i 0.510726π-0.510726\pi
−0.0336909 + 0.999432i 0.510726π0.510726\pi
882882 0 0
883883 − 28.0000i − 0.942275i −0.882060 0.471138i 0.843844π-0.843844\pi
0.882060 0.471138i 0.156156π-0.156156\pi
884884 0 0
885885 6.00000i 0.201688i
886886 0 0
887887 −36.0000 −1.20876 −0.604381 0.796696i 0.706579π-0.706579\pi
−0.604381 + 0.796696i 0.706579π0.706579\pi
888888 0 0
889889 28.0000 0.939090
890890 0 0
891891 − 2.00000i − 0.0670025i
892892 0 0
893893 − 32.0000i − 1.07084i
894894 0 0
895895 10.0000 0.334263
896896 0 0
897897 8.00000 0.267112
898898 0 0
899899 − 8.00000i − 0.266815i
900900 0 0
901901 40.0000i 1.33259i
902902 0 0
903903 8.00000 0.266223
904904 0 0
905905 −8.00000 −0.265929
906906 0 0
907907 28.0000i 0.929725i 0.885383 + 0.464862i 0.153896π0.153896\pi
−0.885383 + 0.464862i 0.846104π0.846104\pi
908908 0 0
909909 2.00000i 0.0663358i
910910 0 0
911911 48.0000 1.59031 0.795155 0.606406i 0.207389π-0.207389\pi
0.795155 + 0.606406i 0.207389π0.207389\pi
912912 0 0
913913 32.0000 1.05905
914914 0 0
915915 0 0
916916 0 0
917917 − 12.0000i − 0.396275i
918918 0 0
919919 −36.0000 −1.18753 −0.593765 0.804638i 0.702359π-0.702359\pi
−0.593765 + 0.804638i 0.702359π0.702359\pi
920920 0 0
921921 12.0000 0.395413
922922 0 0
923923 − 16.0000i − 0.526646i
924924 0 0
925925 − 2.00000i − 0.0657596i
926926 0 0
927927 −14.0000 −0.459820
928928 0 0
929929 −34.0000 −1.11550 −0.557752 0.830008i 0.688336π-0.688336\pi
−0.557752 + 0.830008i 0.688336π0.688336\pi
930930 0 0
931931 − 12.0000i − 0.393284i
932932 0 0
933933 − 32.0000i − 1.04763i
934934 0 0
935935 −8.00000 −0.261628
936936 0 0
937937 −2.00000 −0.0653372 −0.0326686 0.999466i 0.510401π-0.510401\pi
−0.0326686 + 0.999466i 0.510401π0.510401\pi
938938 0 0
939939 2.00000i 0.0652675i
940940 0 0
941941 38.0000i 1.23876i 0.785090 + 0.619382i 0.212617π0.212617\pi
−0.785090 + 0.619382i 0.787383π0.787383\pi
942942 0 0
943943 −24.0000 −0.781548
944944 0 0
945945 2.00000 0.0650600
946946 0 0
947947 12.0000i 0.389948i 0.980808 + 0.194974i 0.0624622π0.0624622\pi
−0.980808 + 0.194974i 0.937538π0.937538\pi
948948 0 0
949949 − 12.0000i − 0.389536i
950950 0 0
951951 −34.0000 −1.10253
952952 0 0
953953 −24.0000 −0.777436 −0.388718 0.921357i 0.627082π-0.627082\pi
−0.388718 + 0.921357i 0.627082π0.627082\pi
954954 0 0
955955 8.00000i 0.258874i
956956 0 0
957957 4.00000i 0.129302i
958958 0 0
959959 0 0
960960 0 0
961961 −15.0000 −0.483871
962962 0 0
963963 8.00000i 0.257796i
964964 0 0
965965 18.0000i 0.579441i
966966 0 0
967967 54.0000 1.73652 0.868261 0.496107i 0.165238π-0.165238\pi
0.868261 + 0.496107i 0.165238π0.165238\pi
968968 0 0
969969 −16.0000 −0.513994
970970 0 0
971971 26.0000i 0.834380i 0.908819 + 0.417190i 0.136985π0.136985\pi
−0.908819 + 0.417190i 0.863015π0.863015\pi
972972 0 0
973973 32.0000i 1.02587i
974974 0 0
975975 2.00000 0.0640513
976976 0 0
977977 −36.0000 −1.15174 −0.575871 0.817541i 0.695337π-0.695337\pi
−0.575871 + 0.817541i 0.695337π0.695337\pi
978978 0 0
979979 12.0000i 0.383522i
980980 0 0
981981 16.0000i 0.510841i
982982 0 0
983983 8.00000 0.255160 0.127580 0.991828i 0.459279π-0.459279\pi
0.127580 + 0.991828i 0.459279π0.459279\pi
984984 0 0
985985 6.00000 0.191176
986986 0 0
987987 16.0000i 0.509286i
988988 0 0
989989 − 16.0000i − 0.508770i
990990 0 0
991991 16.0000 0.508257 0.254128 0.967170i 0.418211π-0.418211\pi
0.254128 + 0.967170i 0.418211π0.418211\pi
992992 0 0
993993 20.0000 0.634681
994994 0 0
995995 − 8.00000i − 0.253617i
996996 0 0
997997 62.0000i 1.96356i 0.190022 + 0.981780i 0.439144π0.439144\pi
−0.190022 + 0.981780i 0.560856π0.560856\pi
998998 0 0
999999 2.00000 0.0632772
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.k.c.961.2 yes 2
3.2 odd 2 5760.2.k.d.2881.2 2
4.3 odd 2 1920.2.k.f.961.1 yes 2
8.3 odd 2 1920.2.k.f.961.2 yes 2
8.5 even 2 inner 1920.2.k.c.961.1 2
12.11 even 2 5760.2.k.g.2881.2 2
16.3 odd 4 3840.2.a.p.1.1 1
16.5 even 4 3840.2.a.bb.1.1 1
16.11 odd 4 3840.2.a.h.1.1 1
16.13 even 4 3840.2.a.f.1.1 1
24.5 odd 2 5760.2.k.d.2881.1 2
24.11 even 2 5760.2.k.g.2881.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.k.c.961.1 2 8.5 even 2 inner
1920.2.k.c.961.2 yes 2 1.1 even 1 trivial
1920.2.k.f.961.1 yes 2 4.3 odd 2
1920.2.k.f.961.2 yes 2 8.3 odd 2
3840.2.a.f.1.1 1 16.13 even 4
3840.2.a.h.1.1 1 16.11 odd 4
3840.2.a.p.1.1 1 16.3 odd 4
3840.2.a.bb.1.1 1 16.5 even 4
5760.2.k.d.2881.1 2 24.5 odd 2
5760.2.k.d.2881.2 2 3.2 odd 2
5760.2.k.g.2881.1 2 24.11 even 2
5760.2.k.g.2881.2 2 12.11 even 2