Properties

Label 1920.2.k.c.961.2
Level $1920$
Weight $2$
Character 1920.961
Analytic conductor $15.331$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(961,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1920.961
Dual form 1920.2.k.c.961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.00000i q^{5} -2.00000 q^{7} -1.00000 q^{9} -2.00000i q^{11} +2.00000i q^{13} +1.00000 q^{15} +4.00000 q^{17} +4.00000i q^{19} -2.00000i q^{21} -4.00000 q^{23} -1.00000 q^{25} -1.00000i q^{27} +2.00000i q^{29} -4.00000 q^{31} +2.00000 q^{33} +2.00000i q^{35} +2.00000i q^{37} -2.00000 q^{39} +6.00000 q^{41} +4.00000i q^{43} +1.00000i q^{45} -8.00000 q^{47} -3.00000 q^{49} +4.00000i q^{51} +10.0000i q^{53} -2.00000 q^{55} -4.00000 q^{57} +6.00000i q^{59} +2.00000 q^{63} +2.00000 q^{65} +12.0000i q^{67} -4.00000i q^{69} -8.00000 q^{71} -6.00000 q^{73} -1.00000i q^{75} +4.00000i q^{77} -4.00000 q^{79} +1.00000 q^{81} +16.0000i q^{83} -4.00000i q^{85} -2.00000 q^{87} -6.00000 q^{89} -4.00000i q^{91} -4.00000i q^{93} +4.00000 q^{95} -14.0000 q^{97} +2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} - 2 q^{9} + 2 q^{15} + 8 q^{17} - 8 q^{23} - 2 q^{25} - 8 q^{31} + 4 q^{33} - 4 q^{39} + 12 q^{41} - 16 q^{47} - 6 q^{49} - 4 q^{55} - 8 q^{57} + 4 q^{63} + 4 q^{65} - 16 q^{71} - 12 q^{73}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 2.00000i − 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) − 2.00000i − 0.436436i
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 2.00000i 0.338062i
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 4.00000i 0.560112i
\(52\) 0 0
\(53\) 10.0000i 1.37361i 0.726844 + 0.686803i \(0.240986\pi\)
−0.726844 + 0.686803i \(0.759014\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) 0 0
\(69\) − 4.00000i − 0.481543i
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) − 1.00000i − 0.115470i
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000i 1.75623i 0.478451 + 0.878114i \(0.341198\pi\)
−0.478451 + 0.878114i \(0.658802\pi\)
\(84\) 0 0
\(85\) − 4.00000i − 0.433861i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) − 4.00000i − 0.419314i
\(92\) 0 0
\(93\) − 4.00000i − 0.414781i
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 2.00000i 0.201008i
\(100\) 0 0
\(101\) − 2.00000i − 0.199007i −0.995037 0.0995037i \(-0.968274\pi\)
0.995037 0.0995037i \(-0.0317255\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) − 8.00000i − 0.773389i −0.922208 0.386695i \(-0.873617\pi\)
0.922208 0.386695i \(-0.126383\pi\)
\(108\) 0 0
\(109\) − 16.0000i − 1.53252i −0.642529 0.766261i \(-0.722115\pi\)
0.642529 0.766261i \(-0.277885\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) 4.00000i 0.373002i
\(116\) 0 0
\(117\) − 2.00000i − 0.184900i
\(118\) 0 0
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −14.0000 −1.24230 −0.621150 0.783692i \(-0.713334\pi\)
−0.621150 + 0.783692i \(0.713334\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 6.00000i 0.524222i 0.965038 + 0.262111i \(0.0844187\pi\)
−0.965038 + 0.262111i \(0.915581\pi\)
\(132\) 0 0
\(133\) − 8.00000i − 0.693688i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) − 16.0000i − 1.35710i −0.734553 0.678551i \(-0.762608\pi\)
0.734553 0.678551i \(-0.237392\pi\)
\(140\) 0 0
\(141\) − 8.00000i − 0.673722i
\(142\) 0 0
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) − 3.00000i − 0.247436i
\(148\) 0 0
\(149\) 18.0000i 1.47462i 0.675556 + 0.737309i \(0.263904\pi\)
−0.675556 + 0.737309i \(0.736096\pi\)
\(150\) 0 0
\(151\) −24.0000 −1.95309 −0.976546 0.215308i \(-0.930924\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 4.00000i 0.321288i
\(156\) 0 0
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) 0 0
\(159\) −10.0000 −0.793052
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) 0 0
\(165\) − 2.00000i − 0.155700i
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) − 4.00000i − 0.305888i
\(172\) 0 0
\(173\) − 6.00000i − 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) 0 0
\(179\) 10.0000i 0.747435i 0.927543 + 0.373718i \(0.121917\pi\)
−0.927543 + 0.373718i \(0.878083\pi\)
\(180\) 0 0
\(181\) − 8.00000i − 0.594635i −0.954779 0.297318i \(-0.903908\pi\)
0.954779 0.297318i \(-0.0960920\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) − 8.00000i − 0.585018i
\(188\) 0 0
\(189\) 2.00000i 0.145479i
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) 0 0
\(195\) 2.00000i 0.143223i
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) − 4.00000i − 0.280745i
\(204\) 0 0
\(205\) − 6.00000i − 0.419058i
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) − 8.00000i − 0.550743i −0.961338 0.275371i \(-0.911199\pi\)
0.961338 0.275371i \(-0.0888008\pi\)
\(212\) 0 0
\(213\) − 8.00000i − 0.548151i
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) − 6.00000i − 0.405442i
\(220\) 0 0
\(221\) 8.00000i 0.538138i
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 4.00000 0.262049 0.131024 0.991379i \(-0.458173\pi\)
0.131024 + 0.991379i \(0.458173\pi\)
\(234\) 0 0
\(235\) 8.00000i 0.521862i
\(236\) 0 0
\(237\) − 4.00000i − 0.259828i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −26.0000 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 3.00000i 0.191663i
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) −16.0000 −1.01396
\(250\) 0 0
\(251\) − 30.0000i − 1.89358i −0.321847 0.946792i \(-0.604304\pi\)
0.321847 0.946792i \(-0.395696\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) 8.00000 0.499026 0.249513 0.968371i \(-0.419729\pi\)
0.249513 + 0.968371i \(0.419729\pi\)
\(258\) 0 0
\(259\) − 4.00000i − 0.248548i
\(260\) 0 0
\(261\) − 2.00000i − 0.123797i
\(262\) 0 0
\(263\) 28.0000 1.72655 0.863277 0.504730i \(-0.168408\pi\)
0.863277 + 0.504730i \(0.168408\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) − 6.00000i − 0.367194i
\(268\) 0 0
\(269\) 18.0000i 1.09748i 0.835993 + 0.548740i \(0.184892\pi\)
−0.835993 + 0.548740i \(0.815108\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 0 0
\(275\) 2.00000i 0.120605i
\(276\) 0 0
\(277\) − 22.0000i − 1.32185i −0.750451 0.660926i \(-0.770164\pi\)
0.750451 0.660926i \(-0.229836\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 0 0
\(285\) 4.00000i 0.236940i
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) − 14.0000i − 0.820695i
\(292\) 0 0
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 6.00000 0.349334
\(296\) 0 0
\(297\) −2.00000 −0.116052
\(298\) 0 0
\(299\) − 8.00000i − 0.462652i
\(300\) 0 0
\(301\) − 8.00000i − 0.461112i
\(302\) 0 0
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 12.0000i − 0.684876i −0.939540 0.342438i \(-0.888747\pi\)
0.939540 0.342438i \(-0.111253\pi\)
\(308\) 0 0
\(309\) 14.0000i 0.796432i
\(310\) 0 0
\(311\) −32.0000 −1.81455 −0.907277 0.420534i \(-0.861843\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 0 0
\(315\) − 2.00000i − 0.112687i
\(316\) 0 0
\(317\) 34.0000i 1.90963i 0.297200 + 0.954815i \(0.403947\pi\)
−0.297200 + 0.954815i \(0.596053\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 16.0000i 0.890264i
\(324\) 0 0
\(325\) − 2.00000i − 0.110940i
\(326\) 0 0
\(327\) 16.0000 0.884802
\(328\) 0 0
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) − 20.0000i − 1.09930i −0.835395 0.549650i \(-0.814761\pi\)
0.835395 0.549650i \(-0.185239\pi\)
\(332\) 0 0
\(333\) − 2.00000i − 0.109599i
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 16.0000i 0.869001i
\(340\) 0 0
\(341\) 8.00000i 0.433224i
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) − 16.0000i − 0.856460i −0.903670 0.428230i \(-0.859137\pi\)
0.903670 0.428230i \(-0.140863\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 4.00000 0.212899 0.106449 0.994318i \(-0.466052\pi\)
0.106449 + 0.994318i \(0.466052\pi\)
\(354\) 0 0
\(355\) 8.00000i 0.424596i
\(356\) 0 0
\(357\) − 8.00000i − 0.423405i
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 6.00000i 0.314054i
\(366\) 0 0
\(367\) −6.00000 −0.313197 −0.156599 0.987662i \(-0.550053\pi\)
−0.156599 + 0.987662i \(0.550053\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) − 20.0000i − 1.03835i
\(372\) 0 0
\(373\) 14.0000i 0.724893i 0.932005 + 0.362446i \(0.118058\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) − 8.00000i − 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 0 0
\(381\) − 14.0000i − 0.717242i
\(382\) 0 0
\(383\) 32.0000 1.63512 0.817562 0.575841i \(-0.195325\pi\)
0.817562 + 0.575841i \(0.195325\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 0 0
\(387\) − 4.00000i − 0.203331i
\(388\) 0 0
\(389\) 2.00000i 0.101404i 0.998714 + 0.0507020i \(0.0161459\pi\)
−0.998714 + 0.0507020i \(0.983854\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) 4.00000i 0.201262i
\(396\) 0 0
\(397\) − 10.0000i − 0.501886i −0.968002 0.250943i \(-0.919259\pi\)
0.968002 0.250943i \(-0.0807406\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) 14.0000 0.699127 0.349563 0.936913i \(-0.386330\pi\)
0.349563 + 0.936913i \(0.386330\pi\)
\(402\) 0 0
\(403\) − 8.00000i − 0.398508i
\(404\) 0 0
\(405\) − 1.00000i − 0.0496904i
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 12.0000i − 0.590481i
\(414\) 0 0
\(415\) 16.0000 0.785409
\(416\) 0 0
\(417\) 16.0000 0.783523
\(418\) 0 0
\(419\) − 34.0000i − 1.66101i −0.557012 0.830504i \(-0.688052\pi\)
0.557012 0.830504i \(-0.311948\pi\)
\(420\) 0 0
\(421\) 20.0000i 0.974740i 0.873195 + 0.487370i \(0.162044\pi\)
−0.873195 + 0.487370i \(0.837956\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.00000i 0.193122i
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 2.00000i 0.0958927i
\(436\) 0 0
\(437\) − 16.0000i − 0.765384i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 3.00000 0.142857
\(442\) 0 0
\(443\) 12.0000i 0.570137i 0.958507 + 0.285069i \(0.0920164\pi\)
−0.958507 + 0.285069i \(0.907984\pi\)
\(444\) 0 0
\(445\) 6.00000i 0.284427i
\(446\) 0 0
\(447\) −18.0000 −0.851371
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) − 12.0000i − 0.565058i
\(452\) 0 0
\(453\) − 24.0000i − 1.12762i
\(454\) 0 0
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 0 0
\(459\) − 4.00000i − 0.186704i
\(460\) 0 0
\(461\) 6.00000i 0.279448i 0.990190 + 0.139724i \(0.0446215\pi\)
−0.990190 + 0.139724i \(0.955378\pi\)
\(462\) 0 0
\(463\) 38.0000 1.76601 0.883005 0.469364i \(-0.155517\pi\)
0.883005 + 0.469364i \(0.155517\pi\)
\(464\) 0 0
\(465\) −4.00000 −0.185496
\(466\) 0 0
\(467\) − 24.0000i − 1.11059i −0.831654 0.555294i \(-0.812606\pi\)
0.831654 0.555294i \(-0.187394\pi\)
\(468\) 0 0
\(469\) − 24.0000i − 1.10822i
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) 8.00000 0.367840
\(474\) 0 0
\(475\) − 4.00000i − 0.183533i
\(476\) 0 0
\(477\) − 10.0000i − 0.457869i
\(478\) 0 0
\(479\) −32.0000 −1.46212 −0.731059 0.682315i \(-0.760973\pi\)
−0.731059 + 0.682315i \(0.760973\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) 8.00000i 0.364013i
\(484\) 0 0
\(485\) 14.0000i 0.635707i
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) − 6.00000i − 0.270776i −0.990793 0.135388i \(-0.956772\pi\)
0.990793 0.135388i \(-0.0432281\pi\)
\(492\) 0 0
\(493\) 8.00000i 0.360302i
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) 16.0000 0.717698
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −2.00000 −0.0889988
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) − 6.00000i − 0.265945i −0.991120 0.132973i \(-0.957548\pi\)
0.991120 0.132973i \(-0.0424523\pi\)
\(510\) 0 0
\(511\) 12.0000 0.530849
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) − 14.0000i − 0.616914i
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(524\) 0 0
\(525\) 2.00000i 0.0872872i
\(526\) 0 0
\(527\) −16.0000 −0.696971
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) − 6.00000i − 0.260378i
\(532\) 0 0
\(533\) 12.0000i 0.519778i
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 0 0
\(537\) −10.0000 −0.431532
\(538\) 0 0
\(539\) 6.00000i 0.258438i
\(540\) 0 0
\(541\) − 8.00000i − 0.343947i −0.985102 0.171973i \(-0.944986\pi\)
0.985102 0.171973i \(-0.0550143\pi\)
\(542\) 0 0
\(543\) 8.00000 0.343313
\(544\) 0 0
\(545\) −16.0000 −0.685365
\(546\) 0 0
\(547\) − 36.0000i − 1.53925i −0.638497 0.769624i \(-0.720443\pi\)
0.638497 0.769624i \(-0.279557\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 0 0
\(555\) 2.00000i 0.0848953i
\(556\) 0 0
\(557\) 2.00000i 0.0847427i 0.999102 + 0.0423714i \(0.0134913\pi\)
−0.999102 + 0.0423714i \(0.986509\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 12.0000i 0.505740i 0.967500 + 0.252870i \(0.0813744\pi\)
−0.967500 + 0.252870i \(0.918626\pi\)
\(564\) 0 0
\(565\) − 16.0000i − 0.673125i
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 0 0
\(571\) − 20.0000i − 0.836974i −0.908223 0.418487i \(-0.862561\pi\)
0.908223 0.418487i \(-0.137439\pi\)
\(572\) 0 0
\(573\) − 8.00000i − 0.334205i
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) 0 0
\(579\) − 18.0000i − 0.748054i
\(580\) 0 0
\(581\) − 32.0000i − 1.32758i
\(582\) 0 0
\(583\) 20.0000 0.828315
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) − 8.00000i − 0.330195i −0.986277 0.165098i \(-0.947206\pi\)
0.986277 0.165098i \(-0.0527939\pi\)
\(588\) 0 0
\(589\) − 16.0000i − 0.659269i
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) 8.00000i 0.327968i
\(596\) 0 0
\(597\) 8.00000i 0.327418i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) − 12.0000i − 0.488678i
\(604\) 0 0
\(605\) − 7.00000i − 0.284590i
\(606\) 0 0
\(607\) −34.0000 −1.38002 −0.690009 0.723801i \(-0.742393\pi\)
−0.690009 + 0.723801i \(0.742393\pi\)
\(608\) 0 0
\(609\) 4.00000 0.162088
\(610\) 0 0
\(611\) − 16.0000i − 0.647291i
\(612\) 0 0
\(613\) 42.0000i 1.69636i 0.529705 + 0.848182i \(0.322303\pi\)
−0.529705 + 0.848182i \(0.677697\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −4.00000 −0.161034 −0.0805170 0.996753i \(-0.525657\pi\)
−0.0805170 + 0.996753i \(0.525657\pi\)
\(618\) 0 0
\(619\) 8.00000i 0.321547i 0.986991 + 0.160774i \(0.0513989\pi\)
−0.986991 + 0.160774i \(0.948601\pi\)
\(620\) 0 0
\(621\) 4.00000i 0.160514i
\(622\) 0 0
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 8.00000i 0.319489i
\(628\) 0 0
\(629\) 8.00000i 0.318981i
\(630\) 0 0
\(631\) −44.0000 −1.75161 −0.875806 0.482663i \(-0.839670\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) 8.00000 0.317971
\(634\) 0 0
\(635\) 14.0000i 0.555573i
\(636\) 0 0
\(637\) − 6.00000i − 0.237729i
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 12.0000i 0.473234i 0.971603 + 0.236617i \(0.0760386\pi\)
−0.971603 + 0.236617i \(0.923961\pi\)
\(644\) 0 0
\(645\) 4.00000i 0.157500i
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 8.00000i 0.313545i
\(652\) 0 0
\(653\) − 34.0000i − 1.33052i −0.746611 0.665261i \(-0.768320\pi\)
0.746611 0.665261i \(-0.231680\pi\)
\(654\) 0 0
\(655\) 6.00000 0.234439
\(656\) 0 0
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) − 18.0000i − 0.701180i −0.936529 0.350590i \(-0.885981\pi\)
0.936529 0.350590i \(-0.114019\pi\)
\(660\) 0 0
\(661\) 32.0000i 1.24466i 0.782757 + 0.622328i \(0.213813\pi\)
−0.782757 + 0.622328i \(0.786187\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) − 8.00000i − 0.309761i
\(668\) 0 0
\(669\) 2.00000i 0.0773245i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) − 22.0000i − 0.845529i −0.906240 0.422764i \(-0.861060\pi\)
0.906240 0.422764i \(-0.138940\pi\)
\(678\) 0 0
\(679\) 28.0000 1.07454
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) 40.0000i 1.53056i 0.643699 + 0.765279i \(0.277399\pi\)
−0.643699 + 0.765279i \(0.722601\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −4.00000 −0.152610
\(688\) 0 0
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) − 20.0000i − 0.760836i −0.924815 0.380418i \(-0.875780\pi\)
0.924815 0.380418i \(-0.124220\pi\)
\(692\) 0 0
\(693\) − 4.00000i − 0.151947i
\(694\) 0 0
\(695\) −16.0000 −0.606915
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 0 0
\(699\) 4.00000i 0.151294i
\(700\) 0 0
\(701\) 34.0000i 1.28416i 0.766637 + 0.642081i \(0.221929\pi\)
−0.766637 + 0.642081i \(0.778071\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 4.00000i 0.150435i
\(708\) 0 0
\(709\) − 52.0000i − 1.95290i −0.215742 0.976450i \(-0.569217\pi\)
0.215742 0.976450i \(-0.430783\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) − 4.00000i − 0.149592i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 0 0
\(723\) − 26.0000i − 0.966950i
\(724\) 0 0
\(725\) − 2.00000i − 0.0742781i
\(726\) 0 0
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 16.0000i 0.591781i
\(732\) 0 0
\(733\) 46.0000i 1.69905i 0.527549 + 0.849524i \(0.323111\pi\)
−0.527549 + 0.849524i \(0.676889\pi\)
\(734\) 0 0
\(735\) −3.00000 −0.110657
\(736\) 0 0
\(737\) 24.0000 0.884051
\(738\) 0 0
\(739\) − 4.00000i − 0.147142i −0.997290 0.0735712i \(-0.976560\pi\)
0.997290 0.0735712i \(-0.0234396\pi\)
\(740\) 0 0
\(741\) − 8.00000i − 0.293887i
\(742\) 0 0
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 0 0
\(747\) − 16.0000i − 0.585409i
\(748\) 0 0
\(749\) 16.0000i 0.584627i
\(750\) 0 0
\(751\) −28.0000 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(752\) 0 0
\(753\) 30.0000 1.09326
\(754\) 0 0
\(755\) 24.0000i 0.873449i
\(756\) 0 0
\(757\) − 6.00000i − 0.218074i −0.994038 0.109037i \(-0.965223\pi\)
0.994038 0.109037i \(-0.0347767\pi\)
\(758\) 0 0
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) −14.0000 −0.507500 −0.253750 0.967270i \(-0.581664\pi\)
−0.253750 + 0.967270i \(0.581664\pi\)
\(762\) 0 0
\(763\) 32.0000i 1.15848i
\(764\) 0 0
\(765\) 4.00000i 0.144620i
\(766\) 0 0
\(767\) −12.0000 −0.433295
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) 8.00000i 0.288113i
\(772\) 0 0
\(773\) − 10.0000i − 0.359675i −0.983696 0.179838i \(-0.942443\pi\)
0.983696 0.179838i \(-0.0575572\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) 24.0000i 0.859889i
\(780\) 0 0
\(781\) 16.0000i 0.572525i
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) 12.0000i 0.427754i 0.976861 + 0.213877i \(0.0686091\pi\)
−0.976861 + 0.213877i \(0.931391\pi\)
\(788\) 0 0
\(789\) 28.0000i 0.996826i
\(790\) 0 0
\(791\) −32.0000 −1.13779
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 10.0000i 0.354663i
\(796\) 0 0
\(797\) − 38.0000i − 1.34603i −0.739629 0.673015i \(-0.764999\pi\)
0.739629 0.673015i \(-0.235001\pi\)
\(798\) 0 0
\(799\) −32.0000 −1.13208
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 12.0000i 0.423471i
\(804\) 0 0
\(805\) − 8.00000i − 0.281963i
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) −34.0000 −1.19538 −0.597688 0.801729i \(-0.703914\pi\)
−0.597688 + 0.801729i \(0.703914\pi\)
\(810\) 0 0
\(811\) 40.0000i 1.40459i 0.711886 + 0.702295i \(0.247841\pi\)
−0.711886 + 0.702295i \(0.752159\pi\)
\(812\) 0 0
\(813\) 24.0000i 0.841717i
\(814\) 0 0
\(815\) 20.0000 0.700569
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 0 0
\(819\) 4.00000i 0.139771i
\(820\) 0 0
\(821\) − 18.0000i − 0.628204i −0.949389 0.314102i \(-0.898297\pi\)
0.949389 0.314102i \(-0.101703\pi\)
\(822\) 0 0
\(823\) −38.0000 −1.32460 −0.662298 0.749240i \(-0.730419\pi\)
−0.662298 + 0.749240i \(0.730419\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) 28.0000i 0.973655i 0.873498 + 0.486828i \(0.161846\pi\)
−0.873498 + 0.486828i \(0.838154\pi\)
\(828\) 0 0
\(829\) − 16.0000i − 0.555703i −0.960624 0.277851i \(-0.910378\pi\)
0.960624 0.277851i \(-0.0896223\pi\)
\(830\) 0 0
\(831\) 22.0000 0.763172
\(832\) 0 0
\(833\) −12.0000 −0.415775
\(834\) 0 0
\(835\) − 12.0000i − 0.415277i
\(836\) 0 0
\(837\) 4.00000i 0.138260i
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 18.0000i 0.619953i
\(844\) 0 0
\(845\) − 9.00000i − 0.309609i
\(846\) 0 0
\(847\) −14.0000 −0.481046
\(848\) 0 0
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) − 8.00000i − 0.274236i
\(852\) 0 0
\(853\) − 46.0000i − 1.57501i −0.616308 0.787505i \(-0.711372\pi\)
0.616308 0.787505i \(-0.288628\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) 20.0000 0.683187 0.341593 0.939848i \(-0.389033\pi\)
0.341593 + 0.939848i \(0.389033\pi\)
\(858\) 0 0
\(859\) 56.0000i 1.91070i 0.295484 + 0.955348i \(0.404519\pi\)
−0.295484 + 0.955348i \(0.595481\pi\)
\(860\) 0 0
\(861\) − 12.0000i − 0.408959i
\(862\) 0 0
\(863\) −44.0000 −1.49778 −0.748889 0.662696i \(-0.769412\pi\)
−0.748889 + 0.662696i \(0.769412\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) − 1.00000i − 0.0339618i
\(868\) 0 0
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 0 0
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) − 2.00000i − 0.0676123i
\(876\) 0 0
\(877\) 2.00000i 0.0675352i 0.999430 + 0.0337676i \(0.0107506\pi\)
−0.999430 + 0.0337676i \(0.989249\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) − 28.0000i − 0.942275i −0.882060 0.471138i \(-0.843844\pi\)
0.882060 0.471138i \(-0.156156\pi\)
\(884\) 0 0
\(885\) 6.00000i 0.201688i
\(886\) 0 0
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) 28.0000 0.939090
\(890\) 0 0
\(891\) − 2.00000i − 0.0670025i
\(892\) 0 0
\(893\) − 32.0000i − 1.07084i
\(894\) 0 0
\(895\) 10.0000 0.334263
\(896\) 0 0
\(897\) 8.00000 0.267112
\(898\) 0 0
\(899\) − 8.00000i − 0.266815i
\(900\) 0 0
\(901\) 40.0000i 1.33259i
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) 0 0
\(905\) −8.00000 −0.265929
\(906\) 0 0
\(907\) 28.0000i 0.929725i 0.885383 + 0.464862i \(0.153896\pi\)
−0.885383 + 0.464862i \(0.846104\pi\)
\(908\) 0 0
\(909\) 2.00000i 0.0663358i
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 32.0000 1.05905
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 12.0000i − 0.396275i
\(918\) 0 0
\(919\) −36.0000 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(920\) 0 0
\(921\) 12.0000 0.395413
\(922\) 0 0
\(923\) − 16.0000i − 0.526646i
\(924\) 0 0
\(925\) − 2.00000i − 0.0657596i
\(926\) 0 0
\(927\) −14.0000 −0.459820
\(928\) 0 0
\(929\) −34.0000 −1.11550 −0.557752 0.830008i \(-0.688336\pi\)
−0.557752 + 0.830008i \(0.688336\pi\)
\(930\) 0 0
\(931\) − 12.0000i − 0.393284i
\(932\) 0 0
\(933\) − 32.0000i − 1.04763i
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 2.00000i 0.0652675i
\(940\) 0 0
\(941\) 38.0000i 1.23876i 0.785090 + 0.619382i \(0.212617\pi\)
−0.785090 + 0.619382i \(0.787383\pi\)
\(942\) 0 0
\(943\) −24.0000 −0.781548
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) 12.0000i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(948\) 0 0
\(949\) − 12.0000i − 0.389536i
\(950\) 0 0
\(951\) −34.0000 −1.10253
\(952\) 0 0
\(953\) −24.0000 −0.777436 −0.388718 0.921357i \(-0.627082\pi\)
−0.388718 + 0.921357i \(0.627082\pi\)
\(954\) 0 0
\(955\) 8.00000i 0.258874i
\(956\) 0 0
\(957\) 4.00000i 0.129302i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 8.00000i 0.257796i
\(964\) 0 0
\(965\) 18.0000i 0.579441i
\(966\) 0 0
\(967\) 54.0000 1.73652 0.868261 0.496107i \(-0.165238\pi\)
0.868261 + 0.496107i \(0.165238\pi\)
\(968\) 0 0
\(969\) −16.0000 −0.513994
\(970\) 0 0
\(971\) 26.0000i 0.834380i 0.908819 + 0.417190i \(0.136985\pi\)
−0.908819 + 0.417190i \(0.863015\pi\)
\(972\) 0 0
\(973\) 32.0000i 1.02587i
\(974\) 0 0
\(975\) 2.00000 0.0640513
\(976\) 0 0
\(977\) −36.0000 −1.15174 −0.575871 0.817541i \(-0.695337\pi\)
−0.575871 + 0.817541i \(0.695337\pi\)
\(978\) 0 0
\(979\) 12.0000i 0.383522i
\(980\) 0 0
\(981\) 16.0000i 0.510841i
\(982\) 0 0
\(983\) 8.00000 0.255160 0.127580 0.991828i \(-0.459279\pi\)
0.127580 + 0.991828i \(0.459279\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 16.0000i 0.509286i
\(988\) 0 0
\(989\) − 16.0000i − 0.508770i
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) 20.0000 0.634681
\(994\) 0 0
\(995\) − 8.00000i − 0.253617i
\(996\) 0 0
\(997\) 62.0000i 1.96356i 0.190022 + 0.981780i \(0.439144\pi\)
−0.190022 + 0.981780i \(0.560856\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.k.c.961.2 yes 2
3.2 odd 2 5760.2.k.d.2881.2 2
4.3 odd 2 1920.2.k.f.961.1 yes 2
8.3 odd 2 1920.2.k.f.961.2 yes 2
8.5 even 2 inner 1920.2.k.c.961.1 2
12.11 even 2 5760.2.k.g.2881.2 2
16.3 odd 4 3840.2.a.p.1.1 1
16.5 even 4 3840.2.a.bb.1.1 1
16.11 odd 4 3840.2.a.h.1.1 1
16.13 even 4 3840.2.a.f.1.1 1
24.5 odd 2 5760.2.k.d.2881.1 2
24.11 even 2 5760.2.k.g.2881.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.k.c.961.1 2 8.5 even 2 inner
1920.2.k.c.961.2 yes 2 1.1 even 1 trivial
1920.2.k.f.961.1 yes 2 4.3 odd 2
1920.2.k.f.961.2 yes 2 8.3 odd 2
3840.2.a.f.1.1 1 16.13 even 4
3840.2.a.h.1.1 1 16.11 odd 4
3840.2.a.p.1.1 1 16.3 odd 4
3840.2.a.bb.1.1 1 16.5 even 4
5760.2.k.d.2881.1 2 24.5 odd 2
5760.2.k.d.2881.2 2 3.2 odd 2
5760.2.k.g.2881.1 2 24.11 even 2
5760.2.k.g.2881.2 2 12.11 even 2