Defining parameters
Level: | \( N \) | \(=\) | \( 1936 = 2^{4} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1936.n (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(264\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1936, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 28 | 156 |
Cusp forms | 40 | 12 | 28 |
Eisenstein series | 144 | 16 | 128 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 8 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1936, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1936.1.n.a | $4$ | $0.966$ | \(\Q(\zeta_{10})\) | $D_{3}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(-1\) | \(1\) | \(0\) | \(q-\zeta_{10}^{3}q^{3}-\zeta_{10}^{4}q^{5}-\zeta_{10}^{2}q^{15}+\cdots\) |
1936.1.n.b | $8$ | $0.966$ | 8.0.64000000.1 | $S_{4}$ | None | None | \(0\) | \(-2\) | \(-2\) | \(0\) | \(q-\beta _{6}q^{3}+(-1+\beta _{2}-\beta _{4}+\beta _{6})q^{5}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1936, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1936, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 2}\)