Properties

Label 1936.1.n
Level $1936$
Weight $1$
Character orbit 1936.n
Rep. character $\chi_{1936}(161,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $12$
Newform subspaces $2$
Sturm bound $264$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1936.n (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 2 \)
Sturm bound: \(264\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1936, [\chi])\).

Total New Old
Modular forms 184 28 156
Cusp forms 40 12 28
Eisenstein series 144 16 128

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 8 0

Trace form

\( 12 q - 3 q^{3} - q^{5} - q^{15} + 12 q^{23} + 3 q^{27} + q^{31} - q^{37} + 2 q^{47} + q^{49} - 2 q^{53} + q^{59} - 4 q^{67} - 3 q^{69} - 3 q^{71} + 3 q^{81} - 12 q^{89} + q^{93} + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1936, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1936.1.n.a 1936.n 11.d $4$ $0.966$ \(\Q(\zeta_{10})\) $D_{3}$ \(\Q(\sqrt{-11}) \) None 44.1.d.a \(0\) \(-1\) \(1\) \(0\) \(q-\zeta_{10}^{3}q^{3}-\zeta_{10}^{4}q^{5}-\zeta_{10}^{2}q^{15}+\cdots\)
1936.1.n.b 1936.n 11.d $8$ $0.966$ 8.0.64000000.1 $S_{4}$ None None 968.1.h.a \(0\) \(-2\) \(-2\) \(0\) \(q-\beta _{6}q^{3}+(-1+\beta _{2}-\beta _{4}+\beta _{6})q^{5}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1936, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1936, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 2}\)