Properties

Label 195.2.bh
Level $195$
Weight $2$
Character orbit 195.bh
Rep. character $\chi_{195}(59,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $96$
Newform subspaces $1$
Sturm bound $56$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.bh (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(56\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(195, [\chi])\).

Total New Old
Modular forms 128 128 0
Cusp forms 96 96 0
Eisenstein series 32 32 0

Trace form

\( 96 q - 24 q^{4} - 4 q^{9} - 36 q^{10} + 10 q^{15} - 16 q^{21} - 28 q^{24} + 18 q^{30} - 40 q^{31} - 32 q^{34} - 60 q^{36} - 4 q^{39} + 40 q^{40} + 4 q^{45} - 128 q^{46} + 60 q^{54} + 28 q^{55} + 20 q^{60}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(195, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
195.2.bh.a 195.bh 195.ah $96$ $1.557$ None 195.2.bh.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$