Properties

Label 195.2.v
Level $195$
Weight $2$
Character orbit 195.v
Rep. character $\chi_{195}(4,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $32$
Newform subspaces $1$
Sturm bound $56$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.v (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(56\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(195, [\chi])\).

Total New Old
Modular forms 64 32 32
Cusp forms 48 32 16
Eisenstein series 16 0 16

Trace form

\( 32 q - 20 q^{4} + 16 q^{9} + 2 q^{10} - 12 q^{11} + 8 q^{14} - 6 q^{15} - 28 q^{16} - 30 q^{20} - 4 q^{25} + 52 q^{26} - 24 q^{29} + 4 q^{30} - 2 q^{35} + 20 q^{36} + 4 q^{40} - 36 q^{41} + 12 q^{45} - 48 q^{46}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(195, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
195.2.v.a 195.v 65.l $32$ $1.557$ None 195.2.v.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(195, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(195, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)