Properties

Label 195.4.bl
Level $195$
Weight $4$
Character orbit 195.bl
Rep. character $\chi_{195}(68,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $320$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 195.bl (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(195, [\chi])\).

Total New Old
Modular forms 352 352 0
Cusp forms 320 320 0
Eisenstein series 32 32 0

Trace form

\( 320 q - 2 q^{3} - 4 q^{6} - 4 q^{7} + 68 q^{10} - 148 q^{12} + 64 q^{13} - 2 q^{15} + 2168 q^{16} - 8 q^{18} + 208 q^{21} + 148 q^{22} - 16 q^{25} + 544 q^{27} - 548 q^{28} + 416 q^{30} + 112 q^{31} + 734 q^{33}+ \cdots - 1540 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(195, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
195.4.bl.a 195.bl 195.al $320$ $11.505$ None 195.4.bl.a \(0\) \(-2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{12}]$