Properties

Label 195.6.bb
Level $195$
Weight $6$
Character orbit 195.bb
Rep. character $\chi_{195}(121,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $92$
Newform subspaces $2$
Sturm bound $168$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 195.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(168\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(195, [\chi])\).

Total New Old
Modular forms 288 92 196
Cusp forms 272 92 180
Eisenstein series 16 0 16

Trace form

\( 92 q - 18 q^{3} + 704 q^{4} - 546 q^{7} - 3726 q^{9} + 400 q^{10} - 1008 q^{11} - 1152 q^{12} - 1278 q^{13} + 3536 q^{14} - 11000 q^{16} + 3612 q^{17} + 5412 q^{19} + 11400 q^{20} - 3612 q^{22} - 3956 q^{23}+ \cdots + 424176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(195, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
195.6.bb.a 195.bb 13.e $44$ $31.275$ None 195.6.bb.a \(0\) \(198\) \(0\) \(-858\) $\mathrm{SU}(2)[C_{6}]$
195.6.bb.b 195.bb 13.e $48$ $31.275$ None 195.6.bb.b \(0\) \(-216\) \(0\) \(312\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{6}^{\mathrm{old}}(195, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(195, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)