Defining parameters
Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 195.bb (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(195, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 288 | 92 | 196 |
Cusp forms | 272 | 92 | 180 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(195, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
195.6.bb.a | $44$ | $31.275$ | None | \(0\) | \(198\) | \(0\) | \(-858\) | ||
195.6.bb.b | $48$ | $31.275$ | None | \(0\) | \(-216\) | \(0\) | \(312\) |
Decomposition of \(S_{6}^{\mathrm{old}}(195, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(195, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)