Properties

Label 196.1.g
Level $196$
Weight $1$
Character orbit 196.g
Rep. character $\chi_{196}(67,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 196.g (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(196, [\chi])\).

Total New Old
Modular forms 18 10 8
Cusp forms 2 2 0
Eisenstein series 16 8 8

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q + q^{2} - q^{4} - 2 q^{8} - q^{9} - q^{16} + q^{18} + q^{25} - 4 q^{29} + q^{32} + 2 q^{36} + 2 q^{37} + 2 q^{50} - 2 q^{53} - 2 q^{58} + 2 q^{64} + q^{72} - 2 q^{74} - q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(196, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
196.1.g.a 196.g 28.g $2$ $0.098$ \(\Q(\sqrt{-3}) \) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-7}) \) \(\Q(\sqrt{7}) \) 196.1.c.a \(1\) \(0\) \(0\) \(0\) \(q-\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}-q^{8}+\zeta_{6}^{2}q^{9}+\cdots\)