Properties

Label 196.4.a.b.1.1
Level $196$
Weight $4$
Character 196.1
Self dual yes
Analytic conductor $11.564$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,4,Mod(1,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5643743611\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{3} -6.00000 q^{5} -11.0000 q^{9} -12.0000 q^{11} +82.0000 q^{13} +24.0000 q^{15} +30.0000 q^{17} -68.0000 q^{19} +216.000 q^{23} -89.0000 q^{25} +152.000 q^{27} +246.000 q^{29} +112.000 q^{31} +48.0000 q^{33} +110.000 q^{37} -328.000 q^{39} +246.000 q^{41} -172.000 q^{43} +66.0000 q^{45} -192.000 q^{47} -120.000 q^{51} +558.000 q^{53} +72.0000 q^{55} +272.000 q^{57} -540.000 q^{59} -110.000 q^{61} -492.000 q^{65} +140.000 q^{67} -864.000 q^{69} -840.000 q^{71} +550.000 q^{73} +356.000 q^{75} -208.000 q^{79} -311.000 q^{81} -516.000 q^{83} -180.000 q^{85} -984.000 q^{87} +1398.00 q^{89} -448.000 q^{93} +408.000 q^{95} -1586.00 q^{97} +132.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.00000 −0.769800 −0.384900 0.922958i \(-0.625764\pi\)
−0.384900 + 0.922958i \(0.625764\pi\)
\(4\) 0 0
\(5\) −6.00000 −0.536656 −0.268328 0.963328i \(-0.586471\pi\)
−0.268328 + 0.963328i \(0.586471\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −11.0000 −0.407407
\(10\) 0 0
\(11\) −12.0000 −0.328921 −0.164461 0.986384i \(-0.552588\pi\)
−0.164461 + 0.986384i \(0.552588\pi\)
\(12\) 0 0
\(13\) 82.0000 1.74944 0.874720 0.484629i \(-0.161046\pi\)
0.874720 + 0.484629i \(0.161046\pi\)
\(14\) 0 0
\(15\) 24.0000 0.413118
\(16\) 0 0
\(17\) 30.0000 0.428004 0.214002 0.976833i \(-0.431350\pi\)
0.214002 + 0.976833i \(0.431350\pi\)
\(18\) 0 0
\(19\) −68.0000 −0.821067 −0.410533 0.911846i \(-0.634657\pi\)
−0.410533 + 0.911846i \(0.634657\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 216.000 1.95822 0.979111 0.203326i \(-0.0651750\pi\)
0.979111 + 0.203326i \(0.0651750\pi\)
\(24\) 0 0
\(25\) −89.0000 −0.712000
\(26\) 0 0
\(27\) 152.000 1.08342
\(28\) 0 0
\(29\) 246.000 1.57521 0.787604 0.616181i \(-0.211321\pi\)
0.787604 + 0.616181i \(0.211321\pi\)
\(30\) 0 0
\(31\) 112.000 0.648897 0.324448 0.945903i \(-0.394821\pi\)
0.324448 + 0.945903i \(0.394821\pi\)
\(32\) 0 0
\(33\) 48.0000 0.253204
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 110.000 0.488754 0.244377 0.969680i \(-0.421417\pi\)
0.244377 + 0.969680i \(0.421417\pi\)
\(38\) 0 0
\(39\) −328.000 −1.34672
\(40\) 0 0
\(41\) 246.000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −172.000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 66.0000 0.218638
\(46\) 0 0
\(47\) −192.000 −0.595874 −0.297937 0.954586i \(-0.596299\pi\)
−0.297937 + 0.954586i \(0.596299\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −120.000 −0.329478
\(52\) 0 0
\(53\) 558.000 1.44617 0.723087 0.690757i \(-0.242723\pi\)
0.723087 + 0.690757i \(0.242723\pi\)
\(54\) 0 0
\(55\) 72.0000 0.176518
\(56\) 0 0
\(57\) 272.000 0.632058
\(58\) 0 0
\(59\) −540.000 −1.19156 −0.595780 0.803148i \(-0.703157\pi\)
−0.595780 + 0.803148i \(0.703157\pi\)
\(60\) 0 0
\(61\) −110.000 −0.230886 −0.115443 0.993314i \(-0.536829\pi\)
−0.115443 + 0.993314i \(0.536829\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −492.000 −0.938848
\(66\) 0 0
\(67\) 140.000 0.255279 0.127640 0.991821i \(-0.459260\pi\)
0.127640 + 0.991821i \(0.459260\pi\)
\(68\) 0 0
\(69\) −864.000 −1.50744
\(70\) 0 0
\(71\) −840.000 −1.40408 −0.702040 0.712138i \(-0.747727\pi\)
−0.702040 + 0.712138i \(0.747727\pi\)
\(72\) 0 0
\(73\) 550.000 0.881817 0.440908 0.897552i \(-0.354656\pi\)
0.440908 + 0.897552i \(0.354656\pi\)
\(74\) 0 0
\(75\) 356.000 0.548098
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −208.000 −0.296226 −0.148113 0.988970i \(-0.547320\pi\)
−0.148113 + 0.988970i \(0.547320\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) −516.000 −0.682390 −0.341195 0.939993i \(-0.610832\pi\)
−0.341195 + 0.939993i \(0.610832\pi\)
\(84\) 0 0
\(85\) −180.000 −0.229691
\(86\) 0 0
\(87\) −984.000 −1.21260
\(88\) 0 0
\(89\) 1398.00 1.66503 0.832515 0.554002i \(-0.186900\pi\)
0.832515 + 0.554002i \(0.186900\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −448.000 −0.499521
\(94\) 0 0
\(95\) 408.000 0.440631
\(96\) 0 0
\(97\) −1586.00 −1.66014 −0.830072 0.557657i \(-0.811701\pi\)
−0.830072 + 0.557657i \(0.811701\pi\)
\(98\) 0 0
\(99\) 132.000 0.134005
\(100\) 0 0
\(101\) 1242.00 1.22360 0.611800 0.791012i \(-0.290446\pi\)
0.611800 + 0.791012i \(0.290446\pi\)
\(102\) 0 0
\(103\) −680.000 −0.650509 −0.325254 0.945627i \(-0.605450\pi\)
−0.325254 + 0.945627i \(0.605450\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 996.000 0.899878 0.449939 0.893059i \(-0.351446\pi\)
0.449939 + 0.893059i \(0.351446\pi\)
\(108\) 0 0
\(109\) 1382.00 1.21442 0.607209 0.794542i \(-0.292289\pi\)
0.607209 + 0.794542i \(0.292289\pi\)
\(110\) 0 0
\(111\) −440.000 −0.376243
\(112\) 0 0
\(113\) −750.000 −0.624372 −0.312186 0.950021i \(-0.601061\pi\)
−0.312186 + 0.950021i \(0.601061\pi\)
\(114\) 0 0
\(115\) −1296.00 −1.05089
\(116\) 0 0
\(117\) −902.000 −0.712734
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 0 0
\(123\) −984.000 −0.721336
\(124\) 0 0
\(125\) 1284.00 0.918756
\(126\) 0 0
\(127\) 176.000 0.122972 0.0614861 0.998108i \(-0.480416\pi\)
0.0614861 + 0.998108i \(0.480416\pi\)
\(128\) 0 0
\(129\) 688.000 0.469574
\(130\) 0 0
\(131\) 1548.00 1.03244 0.516219 0.856457i \(-0.327339\pi\)
0.516219 + 0.856457i \(0.327339\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −912.000 −0.581426
\(136\) 0 0
\(137\) 378.000 0.235728 0.117864 0.993030i \(-0.462395\pi\)
0.117864 + 0.993030i \(0.462395\pi\)
\(138\) 0 0
\(139\) 2500.00 1.52552 0.762760 0.646682i \(-0.223844\pi\)
0.762760 + 0.646682i \(0.223844\pi\)
\(140\) 0 0
\(141\) 768.000 0.458704
\(142\) 0 0
\(143\) −984.000 −0.575428
\(144\) 0 0
\(145\) −1476.00 −0.845346
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 846.000 0.465148 0.232574 0.972579i \(-0.425285\pi\)
0.232574 + 0.972579i \(0.425285\pi\)
\(150\) 0 0
\(151\) −2536.00 −1.36673 −0.683367 0.730075i \(-0.739485\pi\)
−0.683367 + 0.730075i \(0.739485\pi\)
\(152\) 0 0
\(153\) −330.000 −0.174372
\(154\) 0 0
\(155\) −672.000 −0.348234
\(156\) 0 0
\(157\) 1186.00 0.602886 0.301443 0.953484i \(-0.402532\pi\)
0.301443 + 0.953484i \(0.402532\pi\)
\(158\) 0 0
\(159\) −2232.00 −1.11326
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2108.00 1.01295 0.506476 0.862254i \(-0.330948\pi\)
0.506476 + 0.862254i \(0.330948\pi\)
\(164\) 0 0
\(165\) −288.000 −0.135883
\(166\) 0 0
\(167\) 1944.00 0.900786 0.450393 0.892830i \(-0.351284\pi\)
0.450393 + 0.892830i \(0.351284\pi\)
\(168\) 0 0
\(169\) 4527.00 2.06054
\(170\) 0 0
\(171\) 748.000 0.334509
\(172\) 0 0
\(173\) 1362.00 0.598560 0.299280 0.954165i \(-0.403253\pi\)
0.299280 + 0.954165i \(0.403253\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2160.00 0.917263
\(178\) 0 0
\(179\) 1596.00 0.666428 0.333214 0.942851i \(-0.391867\pi\)
0.333214 + 0.942851i \(0.391867\pi\)
\(180\) 0 0
\(181\) 1690.00 0.694015 0.347007 0.937862i \(-0.387198\pi\)
0.347007 + 0.937862i \(0.387198\pi\)
\(182\) 0 0
\(183\) 440.000 0.177736
\(184\) 0 0
\(185\) −660.000 −0.262293
\(186\) 0 0
\(187\) −360.000 −0.140780
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3552.00 1.34562 0.672811 0.739815i \(-0.265087\pi\)
0.672811 + 0.739815i \(0.265087\pi\)
\(192\) 0 0
\(193\) −2686.00 −1.00177 −0.500887 0.865512i \(-0.666993\pi\)
−0.500887 + 0.865512i \(0.666993\pi\)
\(194\) 0 0
\(195\) 1968.00 0.722725
\(196\) 0 0
\(197\) −1410.00 −0.509941 −0.254970 0.966949i \(-0.582066\pi\)
−0.254970 + 0.966949i \(0.582066\pi\)
\(198\) 0 0
\(199\) 2968.00 1.05727 0.528633 0.848850i \(-0.322705\pi\)
0.528633 + 0.848850i \(0.322705\pi\)
\(200\) 0 0
\(201\) −560.000 −0.196514
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1476.00 −0.502870
\(206\) 0 0
\(207\) −2376.00 −0.797794
\(208\) 0 0
\(209\) 816.000 0.270067
\(210\) 0 0
\(211\) −1348.00 −0.439811 −0.219906 0.975521i \(-0.570575\pi\)
−0.219906 + 0.975521i \(0.570575\pi\)
\(212\) 0 0
\(213\) 3360.00 1.08086
\(214\) 0 0
\(215\) 1032.00 0.327357
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2200.00 −0.678823
\(220\) 0 0
\(221\) 2460.00 0.748767
\(222\) 0 0
\(223\) −3872.00 −1.16273 −0.581364 0.813644i \(-0.697481\pi\)
−0.581364 + 0.813644i \(0.697481\pi\)
\(224\) 0 0
\(225\) 979.000 0.290074
\(226\) 0 0
\(227\) −5364.00 −1.56838 −0.784188 0.620524i \(-0.786920\pi\)
−0.784188 + 0.620524i \(0.786920\pi\)
\(228\) 0 0
\(229\) 874.000 0.252208 0.126104 0.992017i \(-0.459753\pi\)
0.126104 + 0.992017i \(0.459753\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 378.000 0.106282 0.0531408 0.998587i \(-0.483077\pi\)
0.0531408 + 0.998587i \(0.483077\pi\)
\(234\) 0 0
\(235\) 1152.00 0.319780
\(236\) 0 0
\(237\) 832.000 0.228035
\(238\) 0 0
\(239\) 1920.00 0.519642 0.259821 0.965657i \(-0.416336\pi\)
0.259821 + 0.965657i \(0.416336\pi\)
\(240\) 0 0
\(241\) −4322.00 −1.15521 −0.577603 0.816318i \(-0.696012\pi\)
−0.577603 + 0.816318i \(0.696012\pi\)
\(242\) 0 0
\(243\) −2860.00 −0.755017
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5576.00 −1.43641
\(248\) 0 0
\(249\) 2064.00 0.525304
\(250\) 0 0
\(251\) −5292.00 −1.33079 −0.665395 0.746492i \(-0.731737\pi\)
−0.665395 + 0.746492i \(0.731737\pi\)
\(252\) 0 0
\(253\) −2592.00 −0.644101
\(254\) 0 0
\(255\) 720.000 0.176816
\(256\) 0 0
\(257\) 5118.00 1.24223 0.621113 0.783721i \(-0.286681\pi\)
0.621113 + 0.783721i \(0.286681\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2706.00 −0.641752
\(262\) 0 0
\(263\) 3768.00 0.883440 0.441720 0.897153i \(-0.354368\pi\)
0.441720 + 0.897153i \(0.354368\pi\)
\(264\) 0 0
\(265\) −3348.00 −0.776098
\(266\) 0 0
\(267\) −5592.00 −1.28174
\(268\) 0 0
\(269\) −3918.00 −0.888047 −0.444024 0.896015i \(-0.646449\pi\)
−0.444024 + 0.896015i \(0.646449\pi\)
\(270\) 0 0
\(271\) −4880.00 −1.09387 −0.546935 0.837175i \(-0.684206\pi\)
−0.546935 + 0.837175i \(0.684206\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1068.00 0.234192
\(276\) 0 0
\(277\) −3538.00 −0.767429 −0.383714 0.923452i \(-0.625355\pi\)
−0.383714 + 0.923452i \(0.625355\pi\)
\(278\) 0 0
\(279\) −1232.00 −0.264365
\(280\) 0 0
\(281\) −5430.00 −1.15276 −0.576382 0.817180i \(-0.695536\pi\)
−0.576382 + 0.817180i \(0.695536\pi\)
\(282\) 0 0
\(283\) 6436.00 1.35187 0.675937 0.736959i \(-0.263739\pi\)
0.675937 + 0.736959i \(0.263739\pi\)
\(284\) 0 0
\(285\) −1632.00 −0.339198
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4013.00 −0.816813
\(290\) 0 0
\(291\) 6344.00 1.27798
\(292\) 0 0
\(293\) −1350.00 −0.269174 −0.134587 0.990902i \(-0.542971\pi\)
−0.134587 + 0.990902i \(0.542971\pi\)
\(294\) 0 0
\(295\) 3240.00 0.639458
\(296\) 0 0
\(297\) −1824.00 −0.356361
\(298\) 0 0
\(299\) 17712.0 3.42579
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4968.00 −0.941928
\(304\) 0 0
\(305\) 660.000 0.123907
\(306\) 0 0
\(307\) −3332.00 −0.619437 −0.309719 0.950828i \(-0.600235\pi\)
−0.309719 + 0.950828i \(0.600235\pi\)
\(308\) 0 0
\(309\) 2720.00 0.500762
\(310\) 0 0
\(311\) 4728.00 0.862059 0.431029 0.902338i \(-0.358151\pi\)
0.431029 + 0.902338i \(0.358151\pi\)
\(312\) 0 0
\(313\) −5114.00 −0.923516 −0.461758 0.887006i \(-0.652781\pi\)
−0.461758 + 0.887006i \(0.652781\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7206.00 1.27675 0.638374 0.769726i \(-0.279607\pi\)
0.638374 + 0.769726i \(0.279607\pi\)
\(318\) 0 0
\(319\) −2952.00 −0.518120
\(320\) 0 0
\(321\) −3984.00 −0.692726
\(322\) 0 0
\(323\) −2040.00 −0.351420
\(324\) 0 0
\(325\) −7298.00 −1.24560
\(326\) 0 0
\(327\) −5528.00 −0.934860
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6260.00 1.03952 0.519759 0.854313i \(-0.326022\pi\)
0.519759 + 0.854313i \(0.326022\pi\)
\(332\) 0 0
\(333\) −1210.00 −0.199122
\(334\) 0 0
\(335\) −840.000 −0.136997
\(336\) 0 0
\(337\) −5326.00 −0.860907 −0.430454 0.902613i \(-0.641646\pi\)
−0.430454 + 0.902613i \(0.641646\pi\)
\(338\) 0 0
\(339\) 3000.00 0.480642
\(340\) 0 0
\(341\) −1344.00 −0.213436
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 5184.00 0.808977
\(346\) 0 0
\(347\) 36.0000 0.00556940 0.00278470 0.999996i \(-0.499114\pi\)
0.00278470 + 0.999996i \(0.499114\pi\)
\(348\) 0 0
\(349\) −3134.00 −0.480685 −0.240343 0.970688i \(-0.577260\pi\)
−0.240343 + 0.970688i \(0.577260\pi\)
\(350\) 0 0
\(351\) 12464.0 1.89538
\(352\) 0 0
\(353\) −1218.00 −0.183648 −0.0918238 0.995775i \(-0.529270\pi\)
−0.0918238 + 0.995775i \(0.529270\pi\)
\(354\) 0 0
\(355\) 5040.00 0.753508
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10008.0 −1.47131 −0.735657 0.677354i \(-0.763127\pi\)
−0.735657 + 0.677354i \(0.763127\pi\)
\(360\) 0 0
\(361\) −2235.00 −0.325849
\(362\) 0 0
\(363\) 4748.00 0.686516
\(364\) 0 0
\(365\) −3300.00 −0.473233
\(366\) 0 0
\(367\) 1072.00 0.152474 0.0762370 0.997090i \(-0.475709\pi\)
0.0762370 + 0.997090i \(0.475709\pi\)
\(368\) 0 0
\(369\) −2706.00 −0.381758
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −274.000 −0.0380353 −0.0190177 0.999819i \(-0.506054\pi\)
−0.0190177 + 0.999819i \(0.506054\pi\)
\(374\) 0 0
\(375\) −5136.00 −0.707258
\(376\) 0 0
\(377\) 20172.0 2.75573
\(378\) 0 0
\(379\) 7652.00 1.03709 0.518545 0.855051i \(-0.326474\pi\)
0.518545 + 0.855051i \(0.326474\pi\)
\(380\) 0 0
\(381\) −704.000 −0.0946641
\(382\) 0 0
\(383\) −2160.00 −0.288175 −0.144087 0.989565i \(-0.546025\pi\)
−0.144087 + 0.989565i \(0.546025\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1892.00 0.248516
\(388\) 0 0
\(389\) −1074.00 −0.139984 −0.0699922 0.997548i \(-0.522297\pi\)
−0.0699922 + 0.997548i \(0.522297\pi\)
\(390\) 0 0
\(391\) 6480.00 0.838127
\(392\) 0 0
\(393\) −6192.00 −0.794771
\(394\) 0 0
\(395\) 1248.00 0.158971
\(396\) 0 0
\(397\) −6926.00 −0.875582 −0.437791 0.899077i \(-0.644239\pi\)
−0.437791 + 0.899077i \(0.644239\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1938.00 0.241344 0.120672 0.992692i \(-0.461495\pi\)
0.120672 + 0.992692i \(0.461495\pi\)
\(402\) 0 0
\(403\) 9184.00 1.13521
\(404\) 0 0
\(405\) 1866.00 0.228944
\(406\) 0 0
\(407\) −1320.00 −0.160762
\(408\) 0 0
\(409\) 9574.00 1.15747 0.578733 0.815517i \(-0.303547\pi\)
0.578733 + 0.815517i \(0.303547\pi\)
\(410\) 0 0
\(411\) −1512.00 −0.181463
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3096.00 0.366209
\(416\) 0 0
\(417\) −10000.0 −1.17435
\(418\) 0 0
\(419\) 5052.00 0.589037 0.294518 0.955646i \(-0.404841\pi\)
0.294518 + 0.955646i \(0.404841\pi\)
\(420\) 0 0
\(421\) 3422.00 0.396147 0.198074 0.980187i \(-0.436531\pi\)
0.198074 + 0.980187i \(0.436531\pi\)
\(422\) 0 0
\(423\) 2112.00 0.242763
\(424\) 0 0
\(425\) −2670.00 −0.304739
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3936.00 0.442965
\(430\) 0 0
\(431\) 2208.00 0.246765 0.123382 0.992359i \(-0.460626\pi\)
0.123382 + 0.992359i \(0.460626\pi\)
\(432\) 0 0
\(433\) 6814.00 0.756259 0.378129 0.925753i \(-0.376567\pi\)
0.378129 + 0.925753i \(0.376567\pi\)
\(434\) 0 0
\(435\) 5904.00 0.650747
\(436\) 0 0
\(437\) −14688.0 −1.60783
\(438\) 0 0
\(439\) −12584.0 −1.36811 −0.684056 0.729429i \(-0.739786\pi\)
−0.684056 + 0.729429i \(0.739786\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6996.00 0.750316 0.375158 0.926961i \(-0.377588\pi\)
0.375158 + 0.926961i \(0.377588\pi\)
\(444\) 0 0
\(445\) −8388.00 −0.893549
\(446\) 0 0
\(447\) −3384.00 −0.358071
\(448\) 0 0
\(449\) 9474.00 0.995781 0.497891 0.867240i \(-0.334108\pi\)
0.497891 + 0.867240i \(0.334108\pi\)
\(450\) 0 0
\(451\) −2952.00 −0.308213
\(452\) 0 0
\(453\) 10144.0 1.05211
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5786.00 0.592249 0.296124 0.955149i \(-0.404306\pi\)
0.296124 + 0.955149i \(0.404306\pi\)
\(458\) 0 0
\(459\) 4560.00 0.463709
\(460\) 0 0
\(461\) −3438.00 −0.347340 −0.173670 0.984804i \(-0.555563\pi\)
−0.173670 + 0.984804i \(0.555563\pi\)
\(462\) 0 0
\(463\) 9392.00 0.942728 0.471364 0.881939i \(-0.343762\pi\)
0.471364 + 0.881939i \(0.343762\pi\)
\(464\) 0 0
\(465\) 2688.00 0.268071
\(466\) 0 0
\(467\) 4956.00 0.491084 0.245542 0.969386i \(-0.421034\pi\)
0.245542 + 0.969386i \(0.421034\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4744.00 −0.464102
\(472\) 0 0
\(473\) 2064.00 0.200640
\(474\) 0 0
\(475\) 6052.00 0.584600
\(476\) 0 0
\(477\) −6138.00 −0.589182
\(478\) 0 0
\(479\) 20592.0 1.96424 0.982122 0.188248i \(-0.0602807\pi\)
0.982122 + 0.188248i \(0.0602807\pi\)
\(480\) 0 0
\(481\) 9020.00 0.855045
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9516.00 0.890926
\(486\) 0 0
\(487\) −13432.0 −1.24982 −0.624910 0.780697i \(-0.714864\pi\)
−0.624910 + 0.780697i \(0.714864\pi\)
\(488\) 0 0
\(489\) −8432.00 −0.779771
\(490\) 0 0
\(491\) −14172.0 −1.30259 −0.651297 0.758823i \(-0.725775\pi\)
−0.651297 + 0.758823i \(0.725775\pi\)
\(492\) 0 0
\(493\) 7380.00 0.674196
\(494\) 0 0
\(495\) −792.000 −0.0719147
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5956.00 −0.534323 −0.267162 0.963652i \(-0.586086\pi\)
−0.267162 + 0.963652i \(0.586086\pi\)
\(500\) 0 0
\(501\) −7776.00 −0.693425
\(502\) 0 0
\(503\) −16968.0 −1.50411 −0.752053 0.659102i \(-0.770936\pi\)
−0.752053 + 0.659102i \(0.770936\pi\)
\(504\) 0 0
\(505\) −7452.00 −0.656653
\(506\) 0 0
\(507\) −18108.0 −1.58620
\(508\) 0 0
\(509\) −5214.00 −0.454040 −0.227020 0.973890i \(-0.572898\pi\)
−0.227020 + 0.973890i \(0.572898\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −10336.0 −0.889562
\(514\) 0 0
\(515\) 4080.00 0.349100
\(516\) 0 0
\(517\) 2304.00 0.195996
\(518\) 0 0
\(519\) −5448.00 −0.460772
\(520\) 0 0
\(521\) 1398.00 0.117558 0.0587788 0.998271i \(-0.481279\pi\)
0.0587788 + 0.998271i \(0.481279\pi\)
\(522\) 0 0
\(523\) 18580.0 1.55344 0.776718 0.629849i \(-0.216883\pi\)
0.776718 + 0.629849i \(0.216883\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3360.00 0.277730
\(528\) 0 0
\(529\) 34489.0 2.83463
\(530\) 0 0
\(531\) 5940.00 0.485450
\(532\) 0 0
\(533\) 20172.0 1.63930
\(534\) 0 0
\(535\) −5976.00 −0.482925
\(536\) 0 0
\(537\) −6384.00 −0.513017
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −18970.0 −1.50755 −0.753774 0.657133i \(-0.771769\pi\)
−0.753774 + 0.657133i \(0.771769\pi\)
\(542\) 0 0
\(543\) −6760.00 −0.534253
\(544\) 0 0
\(545\) −8292.00 −0.651725
\(546\) 0 0
\(547\) −16036.0 −1.25347 −0.626737 0.779231i \(-0.715610\pi\)
−0.626737 + 0.779231i \(0.715610\pi\)
\(548\) 0 0
\(549\) 1210.00 0.0940647
\(550\) 0 0
\(551\) −16728.0 −1.29335
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2640.00 0.201913
\(556\) 0 0
\(557\) 8310.00 0.632147 0.316074 0.948735i \(-0.397635\pi\)
0.316074 + 0.948735i \(0.397635\pi\)
\(558\) 0 0
\(559\) −14104.0 −1.06715
\(560\) 0 0
\(561\) 1440.00 0.108372
\(562\) 0 0
\(563\) −7092.00 −0.530892 −0.265446 0.964126i \(-0.585519\pi\)
−0.265446 + 0.964126i \(0.585519\pi\)
\(564\) 0 0
\(565\) 4500.00 0.335073
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7158.00 −0.527380 −0.263690 0.964608i \(-0.584940\pi\)
−0.263690 + 0.964608i \(0.584940\pi\)
\(570\) 0 0
\(571\) 6500.00 0.476386 0.238193 0.971218i \(-0.423445\pi\)
0.238193 + 0.971218i \(0.423445\pi\)
\(572\) 0 0
\(573\) −14208.0 −1.03586
\(574\) 0 0
\(575\) −19224.0 −1.39425
\(576\) 0 0
\(577\) −21794.0 −1.57244 −0.786218 0.617949i \(-0.787964\pi\)
−0.786218 + 0.617949i \(0.787964\pi\)
\(578\) 0 0
\(579\) 10744.0 0.771166
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6696.00 −0.475678
\(584\) 0 0
\(585\) 5412.00 0.382493
\(586\) 0 0
\(587\) −9756.00 −0.685985 −0.342993 0.939338i \(-0.611441\pi\)
−0.342993 + 0.939338i \(0.611441\pi\)
\(588\) 0 0
\(589\) −7616.00 −0.532787
\(590\) 0 0
\(591\) 5640.00 0.392553
\(592\) 0 0
\(593\) −5586.00 −0.386829 −0.193414 0.981117i \(-0.561956\pi\)
−0.193414 + 0.981117i \(0.561956\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −11872.0 −0.813884
\(598\) 0 0
\(599\) −24.0000 −0.00163708 −0.000818542 1.00000i \(-0.500261\pi\)
−0.000818542 1.00000i \(0.500261\pi\)
\(600\) 0 0
\(601\) −4298.00 −0.291712 −0.145856 0.989306i \(-0.546594\pi\)
−0.145856 + 0.989306i \(0.546594\pi\)
\(602\) 0 0
\(603\) −1540.00 −0.104003
\(604\) 0 0
\(605\) 7122.00 0.478596
\(606\) 0 0
\(607\) −8480.00 −0.567039 −0.283519 0.958966i \(-0.591502\pi\)
−0.283519 + 0.958966i \(0.591502\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15744.0 −1.04245
\(612\) 0 0
\(613\) −1906.00 −0.125583 −0.0627917 0.998027i \(-0.520000\pi\)
−0.0627917 + 0.998027i \(0.520000\pi\)
\(614\) 0 0
\(615\) 5904.00 0.387109
\(616\) 0 0
\(617\) 7482.00 0.488191 0.244096 0.969751i \(-0.421509\pi\)
0.244096 + 0.969751i \(0.421509\pi\)
\(618\) 0 0
\(619\) 7348.00 0.477126 0.238563 0.971127i \(-0.423324\pi\)
0.238563 + 0.971127i \(0.423324\pi\)
\(620\) 0 0
\(621\) 32832.0 2.12158
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3421.00 0.218944
\(626\) 0 0
\(627\) −3264.00 −0.207897
\(628\) 0 0
\(629\) 3300.00 0.209189
\(630\) 0 0
\(631\) 4520.00 0.285164 0.142582 0.989783i \(-0.454460\pi\)
0.142582 + 0.989783i \(0.454460\pi\)
\(632\) 0 0
\(633\) 5392.00 0.338567
\(634\) 0 0
\(635\) −1056.00 −0.0659938
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 9240.00 0.572032
\(640\) 0 0
\(641\) −19806.0 −1.22042 −0.610211 0.792239i \(-0.708915\pi\)
−0.610211 + 0.792239i \(0.708915\pi\)
\(642\) 0 0
\(643\) 5020.00 0.307884 0.153942 0.988080i \(-0.450803\pi\)
0.153942 + 0.988080i \(0.450803\pi\)
\(644\) 0 0
\(645\) −4128.00 −0.252000
\(646\) 0 0
\(647\) −28392.0 −1.72520 −0.862600 0.505886i \(-0.831166\pi\)
−0.862600 + 0.505886i \(0.831166\pi\)
\(648\) 0 0
\(649\) 6480.00 0.391930
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17562.0 −1.05246 −0.526228 0.850343i \(-0.676394\pi\)
−0.526228 + 0.850343i \(0.676394\pi\)
\(654\) 0 0
\(655\) −9288.00 −0.554064
\(656\) 0 0
\(657\) −6050.00 −0.359259
\(658\) 0 0
\(659\) 4716.00 0.278770 0.139385 0.990238i \(-0.455487\pi\)
0.139385 + 0.990238i \(0.455487\pi\)
\(660\) 0 0
\(661\) 22762.0 1.33939 0.669697 0.742635i \(-0.266424\pi\)
0.669697 + 0.742635i \(0.266424\pi\)
\(662\) 0 0
\(663\) −9840.00 −0.576401
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 53136.0 3.08461
\(668\) 0 0
\(669\) 15488.0 0.895068
\(670\) 0 0
\(671\) 1320.00 0.0759434
\(672\) 0 0
\(673\) 4802.00 0.275042 0.137521 0.990499i \(-0.456086\pi\)
0.137521 + 0.990499i \(0.456086\pi\)
\(674\) 0 0
\(675\) −13528.0 −0.771397
\(676\) 0 0
\(677\) −21558.0 −1.22384 −0.611921 0.790919i \(-0.709603\pi\)
−0.611921 + 0.790919i \(0.709603\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 21456.0 1.20734
\(682\) 0 0
\(683\) 3780.00 0.211768 0.105884 0.994378i \(-0.466233\pi\)
0.105884 + 0.994378i \(0.466233\pi\)
\(684\) 0 0
\(685\) −2268.00 −0.126505
\(686\) 0 0
\(687\) −3496.00 −0.194150
\(688\) 0 0
\(689\) 45756.0 2.52999
\(690\) 0 0
\(691\) 5500.00 0.302793 0.151396 0.988473i \(-0.451623\pi\)
0.151396 + 0.988473i \(0.451623\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15000.0 −0.818680
\(696\) 0 0
\(697\) 7380.00 0.401058
\(698\) 0 0
\(699\) −1512.00 −0.0818156
\(700\) 0 0
\(701\) 10230.0 0.551187 0.275593 0.961274i \(-0.411126\pi\)
0.275593 + 0.961274i \(0.411126\pi\)
\(702\) 0 0
\(703\) −7480.00 −0.401299
\(704\) 0 0
\(705\) −4608.00 −0.246166
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 10190.0 0.539765 0.269883 0.962893i \(-0.413015\pi\)
0.269883 + 0.962893i \(0.413015\pi\)
\(710\) 0 0
\(711\) 2288.00 0.120685
\(712\) 0 0
\(713\) 24192.0 1.27068
\(714\) 0 0
\(715\) 5904.00 0.308807
\(716\) 0 0
\(717\) −7680.00 −0.400021
\(718\) 0 0
\(719\) −9408.00 −0.487982 −0.243991 0.969777i \(-0.578457\pi\)
−0.243991 + 0.969777i \(0.578457\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 17288.0 0.889278
\(724\) 0 0
\(725\) −21894.0 −1.12155
\(726\) 0 0
\(727\) 33064.0 1.68676 0.843381 0.537316i \(-0.180562\pi\)
0.843381 + 0.537316i \(0.180562\pi\)
\(728\) 0 0
\(729\) 19837.0 1.00782
\(730\) 0 0
\(731\) −5160.00 −0.261080
\(732\) 0 0
\(733\) 6322.00 0.318565 0.159283 0.987233i \(-0.449082\pi\)
0.159283 + 0.987233i \(0.449082\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1680.00 −0.0839669
\(738\) 0 0
\(739\) −20740.0 −1.03239 −0.516193 0.856472i \(-0.672651\pi\)
−0.516193 + 0.856472i \(0.672651\pi\)
\(740\) 0 0
\(741\) 22304.0 1.10575
\(742\) 0 0
\(743\) 32040.0 1.58201 0.791005 0.611810i \(-0.209558\pi\)
0.791005 + 0.611810i \(0.209558\pi\)
\(744\) 0 0
\(745\) −5076.00 −0.249624
\(746\) 0 0
\(747\) 5676.00 0.278011
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12832.0 −0.623497 −0.311749 0.950165i \(-0.600915\pi\)
−0.311749 + 0.950165i \(0.600915\pi\)
\(752\) 0 0
\(753\) 21168.0 1.02444
\(754\) 0 0
\(755\) 15216.0 0.733466
\(756\) 0 0
\(757\) −19906.0 −0.955741 −0.477870 0.878430i \(-0.658591\pi\)
−0.477870 + 0.878430i \(0.658591\pi\)
\(758\) 0 0
\(759\) 10368.0 0.495829
\(760\) 0 0
\(761\) −10842.0 −0.516455 −0.258227 0.966084i \(-0.583138\pi\)
−0.258227 + 0.966084i \(0.583138\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1980.00 0.0935778
\(766\) 0 0
\(767\) −44280.0 −2.08456
\(768\) 0 0
\(769\) −28274.0 −1.32586 −0.662930 0.748681i \(-0.730687\pi\)
−0.662930 + 0.748681i \(0.730687\pi\)
\(770\) 0 0
\(771\) −20472.0 −0.956266
\(772\) 0 0
\(773\) 32346.0 1.50505 0.752526 0.658563i \(-0.228835\pi\)
0.752526 + 0.658563i \(0.228835\pi\)
\(774\) 0 0
\(775\) −9968.00 −0.462014
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16728.0 −0.769375
\(780\) 0 0
\(781\) 10080.0 0.461832
\(782\) 0 0
\(783\) 37392.0 1.70662
\(784\) 0 0
\(785\) −7116.00 −0.323543
\(786\) 0 0
\(787\) −30116.0 −1.36407 −0.682033 0.731322i \(-0.738904\pi\)
−0.682033 + 0.731322i \(0.738904\pi\)
\(788\) 0 0
\(789\) −15072.0 −0.680073
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −9020.00 −0.403921
\(794\) 0 0
\(795\) 13392.0 0.597441
\(796\) 0 0
\(797\) 6594.00 0.293063 0.146532 0.989206i \(-0.453189\pi\)
0.146532 + 0.989206i \(0.453189\pi\)
\(798\) 0 0
\(799\) −5760.00 −0.255036
\(800\) 0 0
\(801\) −15378.0 −0.678346
\(802\) 0 0
\(803\) −6600.00 −0.290048
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 15672.0 0.683619
\(808\) 0 0
\(809\) −43014.0 −1.86933 −0.934667 0.355524i \(-0.884303\pi\)
−0.934667 + 0.355524i \(0.884303\pi\)
\(810\) 0 0
\(811\) 14164.0 0.613274 0.306637 0.951827i \(-0.400796\pi\)
0.306637 + 0.951827i \(0.400796\pi\)
\(812\) 0 0
\(813\) 19520.0 0.842062
\(814\) 0 0
\(815\) −12648.0 −0.543608
\(816\) 0 0
\(817\) 11696.0 0.500846
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 34830.0 1.48060 0.740302 0.672275i \(-0.234683\pi\)
0.740302 + 0.672275i \(0.234683\pi\)
\(822\) 0 0
\(823\) 31016.0 1.31367 0.656835 0.754035i \(-0.271895\pi\)
0.656835 + 0.754035i \(0.271895\pi\)
\(824\) 0 0
\(825\) −4272.00 −0.180281
\(826\) 0 0
\(827\) 9876.00 0.415263 0.207631 0.978207i \(-0.433425\pi\)
0.207631 + 0.978207i \(0.433425\pi\)
\(828\) 0 0
\(829\) 3154.00 0.132139 0.0660693 0.997815i \(-0.478954\pi\)
0.0660693 + 0.997815i \(0.478954\pi\)
\(830\) 0 0
\(831\) 14152.0 0.590767
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −11664.0 −0.483412
\(836\) 0 0
\(837\) 17024.0 0.703029
\(838\) 0 0
\(839\) −36936.0 −1.51987 −0.759936 0.649998i \(-0.774770\pi\)
−0.759936 + 0.649998i \(0.774770\pi\)
\(840\) 0 0
\(841\) 36127.0 1.48128
\(842\) 0 0
\(843\) 21720.0 0.887398
\(844\) 0 0
\(845\) −27162.0 −1.10580
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −25744.0 −1.04067
\(850\) 0 0
\(851\) 23760.0 0.957088
\(852\) 0 0
\(853\) −9638.00 −0.386869 −0.193434 0.981113i \(-0.561963\pi\)
−0.193434 + 0.981113i \(0.561963\pi\)
\(854\) 0 0
\(855\) −4488.00 −0.179516
\(856\) 0 0
\(857\) −10266.0 −0.409195 −0.204597 0.978846i \(-0.565589\pi\)
−0.204597 + 0.978846i \(0.565589\pi\)
\(858\) 0 0
\(859\) 4084.00 0.162217 0.0811084 0.996705i \(-0.474154\pi\)
0.0811084 + 0.996705i \(0.474154\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −192.000 −0.00757330 −0.00378665 0.999993i \(-0.501205\pi\)
−0.00378665 + 0.999993i \(0.501205\pi\)
\(864\) 0 0
\(865\) −8172.00 −0.321221
\(866\) 0 0
\(867\) 16052.0 0.628783
\(868\) 0 0
\(869\) 2496.00 0.0974350
\(870\) 0 0
\(871\) 11480.0 0.446596
\(872\) 0 0
\(873\) 17446.0 0.676355
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 19910.0 0.766605 0.383303 0.923623i \(-0.374787\pi\)
0.383303 + 0.923623i \(0.374787\pi\)
\(878\) 0 0
\(879\) 5400.00 0.207210
\(880\) 0 0
\(881\) −14802.0 −0.566052 −0.283026 0.959112i \(-0.591338\pi\)
−0.283026 + 0.959112i \(0.591338\pi\)
\(882\) 0 0
\(883\) −32548.0 −1.24046 −0.620231 0.784419i \(-0.712961\pi\)
−0.620231 + 0.784419i \(0.712961\pi\)
\(884\) 0 0
\(885\) −12960.0 −0.492255
\(886\) 0 0
\(887\) −1464.00 −0.0554186 −0.0277093 0.999616i \(-0.508821\pi\)
−0.0277093 + 0.999616i \(0.508821\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3732.00 0.140322
\(892\) 0 0
\(893\) 13056.0 0.489252
\(894\) 0 0
\(895\) −9576.00 −0.357643
\(896\) 0 0
\(897\) −70848.0 −2.63717
\(898\) 0 0
\(899\) 27552.0 1.02215
\(900\) 0 0
\(901\) 16740.0 0.618968
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10140.0 −0.372448
\(906\) 0 0
\(907\) −49564.0 −1.81449 −0.907247 0.420599i \(-0.861820\pi\)
−0.907247 + 0.420599i \(0.861820\pi\)
\(908\) 0 0
\(909\) −13662.0 −0.498504
\(910\) 0 0
\(911\) 8448.00 0.307239 0.153619 0.988130i \(-0.450907\pi\)
0.153619 + 0.988130i \(0.450907\pi\)
\(912\) 0 0
\(913\) 6192.00 0.224453
\(914\) 0 0
\(915\) −2640.00 −0.0953833
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 14600.0 0.524058 0.262029 0.965060i \(-0.415608\pi\)
0.262029 + 0.965060i \(0.415608\pi\)
\(920\) 0 0
\(921\) 13328.0 0.476843
\(922\) 0 0
\(923\) −68880.0 −2.45635
\(924\) 0 0
\(925\) −9790.00 −0.347993
\(926\) 0 0
\(927\) 7480.00 0.265022
\(928\) 0 0
\(929\) 21102.0 0.745247 0.372623 0.927983i \(-0.378458\pi\)
0.372623 + 0.927983i \(0.378458\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −18912.0 −0.663613
\(934\) 0 0
\(935\) 2160.00 0.0755503
\(936\) 0 0
\(937\) 20806.0 0.725403 0.362701 0.931905i \(-0.381854\pi\)
0.362701 + 0.931905i \(0.381854\pi\)
\(938\) 0 0
\(939\) 20456.0 0.710923
\(940\) 0 0
\(941\) −24510.0 −0.849100 −0.424550 0.905404i \(-0.639568\pi\)
−0.424550 + 0.905404i \(0.639568\pi\)
\(942\) 0 0
\(943\) 53136.0 1.83494
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −44148.0 −1.51491 −0.757454 0.652889i \(-0.773557\pi\)
−0.757454 + 0.652889i \(0.773557\pi\)
\(948\) 0 0
\(949\) 45100.0 1.54268
\(950\) 0 0
\(951\) −28824.0 −0.982841
\(952\) 0 0
\(953\) 27114.0 0.921625 0.460812 0.887498i \(-0.347558\pi\)
0.460812 + 0.887498i \(0.347558\pi\)
\(954\) 0 0
\(955\) −21312.0 −0.722136
\(956\) 0 0
\(957\) 11808.0 0.398849
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −17247.0 −0.578933
\(962\) 0 0
\(963\) −10956.0 −0.366617
\(964\) 0 0
\(965\) 16116.0 0.537609
\(966\) 0 0
\(967\) −10264.0 −0.341332 −0.170666 0.985329i \(-0.554592\pi\)
−0.170666 + 0.985329i \(0.554592\pi\)
\(968\) 0 0
\(969\) 8160.00 0.270523
\(970\) 0 0
\(971\) −51468.0 −1.70102 −0.850508 0.525962i \(-0.823705\pi\)
−0.850508 + 0.525962i \(0.823705\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 29192.0 0.958864
\(976\) 0 0
\(977\) −23790.0 −0.779027 −0.389514 0.921021i \(-0.627357\pi\)
−0.389514 + 0.921021i \(0.627357\pi\)
\(978\) 0 0
\(979\) −16776.0 −0.547664
\(980\) 0 0
\(981\) −15202.0 −0.494763
\(982\) 0 0
\(983\) −26424.0 −0.857370 −0.428685 0.903454i \(-0.641023\pi\)
−0.428685 + 0.903454i \(0.641023\pi\)
\(984\) 0 0
\(985\) 8460.00 0.273663
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −37152.0 −1.19450
\(990\) 0 0
\(991\) 39488.0 1.26577 0.632885 0.774246i \(-0.281871\pi\)
0.632885 + 0.774246i \(0.281871\pi\)
\(992\) 0 0
\(993\) −25040.0 −0.800222
\(994\) 0 0
\(995\) −17808.0 −0.567388
\(996\) 0 0
\(997\) −30854.0 −0.980096 −0.490048 0.871695i \(-0.663021\pi\)
−0.490048 + 0.871695i \(0.663021\pi\)
\(998\) 0 0
\(999\) 16720.0 0.529527
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.4.a.b.1.1 1
3.2 odd 2 1764.4.a.k.1.1 1
4.3 odd 2 784.4.a.n.1.1 1
7.2 even 3 196.4.e.d.165.1 2
7.3 odd 6 196.4.e.c.177.1 2
7.4 even 3 196.4.e.d.177.1 2
7.5 odd 6 196.4.e.c.165.1 2
7.6 odd 2 28.4.a.b.1.1 1
21.2 odd 6 1764.4.k.e.361.1 2
21.5 even 6 1764.4.k.k.361.1 2
21.11 odd 6 1764.4.k.e.1549.1 2
21.17 even 6 1764.4.k.k.1549.1 2
21.20 even 2 252.4.a.c.1.1 1
28.27 even 2 112.4.a.c.1.1 1
35.13 even 4 700.4.e.f.449.2 2
35.27 even 4 700.4.e.f.449.1 2
35.34 odd 2 700.4.a.e.1.1 1
56.13 odd 2 448.4.a.d.1.1 1
56.27 even 2 448.4.a.m.1.1 1
84.83 odd 2 1008.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.4.a.b.1.1 1 7.6 odd 2
112.4.a.c.1.1 1 28.27 even 2
196.4.a.b.1.1 1 1.1 even 1 trivial
196.4.e.c.165.1 2 7.5 odd 6
196.4.e.c.177.1 2 7.3 odd 6
196.4.e.d.165.1 2 7.2 even 3
196.4.e.d.177.1 2 7.4 even 3
252.4.a.c.1.1 1 21.20 even 2
448.4.a.d.1.1 1 56.13 odd 2
448.4.a.m.1.1 1 56.27 even 2
700.4.a.e.1.1 1 35.34 odd 2
700.4.e.f.449.1 2 35.27 even 4
700.4.e.f.449.2 2 35.13 even 4
784.4.a.n.1.1 1 4.3 odd 2
1008.4.a.f.1.1 1 84.83 odd 2
1764.4.a.k.1.1 1 3.2 odd 2
1764.4.k.e.361.1 2 21.2 odd 6
1764.4.k.e.1549.1 2 21.11 odd 6
1764.4.k.k.361.1 2 21.5 even 6
1764.4.k.k.1549.1 2 21.17 even 6