Properties

Label 1960.2.a
Level $1960$
Weight $2$
Character orbit 1960.a
Rep. character $\chi_{1960}(1,\cdot)$
Character field $\Q$
Dimension $41$
Newform subspaces $25$
Sturm bound $672$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 25 \)
Sturm bound: \(672\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1960))\).

Total New Old
Modular forms 368 41 327
Cusp forms 305 41 264
Eisenstein series 63 0 63

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(7\)
\(+\)\(-\)\(-\)\(+\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(18\)
Minus space\(-\)\(23\)

Trace form

\( 41 q + 4 q^{3} - q^{5} + 33 q^{9} + 2 q^{13} - 14 q^{17} + 8 q^{19} + 4 q^{23} + 41 q^{25} + 16 q^{27} + 2 q^{29} + 24 q^{31} - 24 q^{33} - 2 q^{37} + 8 q^{39} + 2 q^{41} + 8 q^{43} + 3 q^{45} - 20 q^{47}+ \cdots + 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1960))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7
1960.2.a.a 1960.a 1.a $1$ $15.651$ \(\Q\) None 280.2.q.c \(0\) \(-2\) \(-1\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+q^{9}-q^{11}-3q^{13}+\cdots\)
1960.2.a.b 1960.a 1.a $1$ $15.651$ \(\Q\) None 1960.2.a.b \(0\) \(-2\) \(-1\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+q^{9}+4q^{11}-2q^{13}+\cdots\)
1960.2.a.c 1960.a 1.a $1$ $15.651$ \(\Q\) None 280.2.q.b \(0\) \(-1\) \(-1\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-2q^{9}-2q^{11}+4q^{13}+\cdots\)
1960.2.a.d 1960.a 1.a $1$ $15.651$ \(\Q\) None 1960.2.a.d \(0\) \(-1\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-2q^{9}-5q^{11}-7q^{13}+\cdots\)
1960.2.a.e 1960.a 1.a $1$ $15.651$ \(\Q\) None 280.2.q.a \(0\) \(-1\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-2q^{9}+2q^{11}-q^{15}+\cdots\)
1960.2.a.f 1960.a 1.a $1$ $15.651$ \(\Q\) None 1960.2.a.f \(0\) \(-1\) \(1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-2q^{9}+3q^{11}+q^{13}+\cdots\)
1960.2.a.g 1960.a 1.a $1$ $15.651$ \(\Q\) None 40.2.a.a \(0\) \(0\) \(-1\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-3q^{9}+4q^{11}+2q^{13}-2q^{17}+\cdots\)
1960.2.a.h 1960.a 1.a $1$ $15.651$ \(\Q\) None 1960.2.a.d \(0\) \(1\) \(-1\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-2q^{9}-5q^{11}+7q^{13}+\cdots\)
1960.2.a.i 1960.a 1.a $1$ $15.651$ \(\Q\) None 280.2.q.a \(0\) \(1\) \(-1\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-2q^{9}+2q^{11}-q^{15}+\cdots\)
1960.2.a.j 1960.a 1.a $1$ $15.651$ \(\Q\) None 1960.2.a.f \(0\) \(1\) \(-1\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-2q^{9}+3q^{11}-q^{13}+\cdots\)
1960.2.a.k 1960.a 1.a $1$ $15.651$ \(\Q\) None 280.2.a.b \(0\) \(1\) \(1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{9}-5q^{11}-q^{13}+\cdots\)
1960.2.a.l 1960.a 1.a $1$ $15.651$ \(\Q\) None 280.2.q.b \(0\) \(1\) \(1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{9}-2q^{11}-4q^{13}+\cdots\)
1960.2.a.m 1960.a 1.a $1$ $15.651$ \(\Q\) None 280.2.q.c \(0\) \(2\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+q^{9}-q^{11}+3q^{13}+\cdots\)
1960.2.a.n 1960.a 1.a $1$ $15.651$ \(\Q\) None 1960.2.a.b \(0\) \(2\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+q^{9}+4q^{11}+2q^{13}+\cdots\)
1960.2.a.o 1960.a 1.a $1$ $15.651$ \(\Q\) None 280.2.a.a \(0\) \(3\) \(-1\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-q^{5}+6q^{9}-5q^{11}+5q^{13}+\cdots\)
1960.2.a.p 1960.a 1.a $2$ $15.651$ \(\Q(\sqrt{2}) \) None 280.2.q.d \(0\) \(-2\) \(2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}+q^{5}-2\beta q^{9}+(-2+\cdots)q^{11}+\cdots\)
1960.2.a.q 1960.a 1.a $2$ $15.651$ \(\Q(\sqrt{2}) \) None 1960.2.a.q \(0\) \(-2\) \(2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}+q^{5}-2\beta q^{9}-q^{11}+\cdots\)
1960.2.a.r 1960.a 1.a $2$ $15.651$ \(\Q(\sqrt{17}) \) None 280.2.a.d \(0\) \(-1\) \(-2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}-q^{5}+(1+\beta )q^{9}-\beta q^{11}+(-2+\cdots)q^{13}+\cdots\)
1960.2.a.s 1960.a 1.a $2$ $15.651$ \(\Q(\sqrt{33}) \) None 280.2.a.c \(0\) \(1\) \(2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+q^{5}+(5+\beta )q^{9}+(4-\beta )q^{11}+\cdots\)
1960.2.a.t 1960.a 1.a $2$ $15.651$ \(\Q(\sqrt{2}) \) None 280.2.q.d \(0\) \(2\) \(-2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-q^{5}+2\beta q^{9}+(-2-2\beta )q^{11}+\cdots\)
1960.2.a.u 1960.a 1.a $2$ $15.651$ \(\Q(\sqrt{2}) \) None 1960.2.a.q \(0\) \(2\) \(-2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-q^{5}+2\beta q^{9}-q^{11}+(1+\cdots)q^{13}+\cdots\)
1960.2.a.v 1960.a 1.a $3$ $15.651$ 3.3.1944.1 None 280.2.q.e \(0\) \(0\) \(-3\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-q^{5}+(3+\beta _{1}+\beta _{2})q^{9}+(1+\cdots)q^{11}+\cdots\)
1960.2.a.w 1960.a 1.a $3$ $15.651$ 3.3.1944.1 None 280.2.q.e \(0\) \(0\) \(3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+q^{5}+(3+\beta _{1}+\beta _{2})q^{9}+(1+\cdots)q^{11}+\cdots\)
1960.2.a.x 1960.a 1.a $4$ $15.651$ 4.4.16448.2 None 1960.2.a.x \(0\) \(-2\) \(-4\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-q^{5}+(1+\beta _{1}+\beta _{2})q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots\)
1960.2.a.y 1960.a 1.a $4$ $15.651$ 4.4.16448.2 None 1960.2.a.x \(0\) \(2\) \(4\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+q^{5}+(1+\beta _{1}+\beta _{2})q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1960))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1960)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(392))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(490))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(980))\)\(^{\oplus 2}\)