Properties

Label 1960.2.ba
Level $1960$
Weight $2$
Character orbit 1960.ba
Rep. character $\chi_{1960}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $464$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.ba (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1960, [\chi])\).

Total New Old
Modular forms 704 496 208
Cusp forms 640 464 176
Eisenstein series 64 32 32

Trace form

\( 464 q + 2 q^{4} - 212 q^{9} + 12 q^{10} + 4 q^{11} + 6 q^{16} + 12 q^{19} - 12 q^{24} + 2 q^{25} - 6 q^{26} + 48 q^{30} + 36 q^{36} - 12 q^{40} + 6 q^{44} - 26 q^{46} + 48 q^{50} + 52 q^{51} - 60 q^{54}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1960, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1960, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1960, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)