Properties

Label 197.10.a.b.1.8
Level 197197
Weight 1010
Character 197.1
Self dual yes
Analytic conductor 101.462101.462
Analytic rank 00
Dimension 7676
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 197 197
Weight: k k == 10 10
Character orbit: [χ][\chi] == 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 101.462059724101.462059724
Analytic rank: 00
Dimension: 7676
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.8
Character χ\chi == 197.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q38.2269q2153.641q3+949.295q4+2107.84q5+5873.22q6+5202.74q716716.4q8+3922.60q980576.2q10+14459.1q11145851.q1227160.2q13198885.q14323851.q15+152978.q16+305985.q17149949.q18+750970.q19+2.00096e6q20799355.q21552727.q22+30312.0q23+2.56833e6q24+2.48987e6q25+1.03825e6q26+2.42145e6q27+4.93893e6q28+3.93647e6q29+1.23798e7q30+952075.q31+2.71094e6q322.22152e6q331.16969e7q34+1.09665e7q35+3.72371e6q36267723.q372.87072e7q38+4.17293e6q393.52356e7q40+1.05316e7q41+3.05568e7q42+8.50472e6q43+1.37260e7q44+8.26822e6q451.15873e6q46+7.59559e6q472.35037e7q481.32851e7q499.51799e7q504.70120e7q512.57831e7q52+4.98917e7q539.25643e7q54+3.04775e7q558.69712e7q561.15380e8q571.50479e8q58+6.81953e6q593.07430e8q60+1.19460e8q613.63949e7q62+2.04083e7q631.81955e8q645.72495e7q65+8.49217e7q665.06638e7q67+2.90470e8q684.65716e6q694.19217e8q702.45300e8q716.55719e7q72+1.17975e8q73+1.02342e7q743.82546e8q75+7.12892e8q76+7.52270e7q771.59518e8q78+5.16564e8q79+3.22454e8q804.49242e8q814.02589e8q82+3.97742e7q837.58824e8q84+6.44969e8q853.25109e8q866.04804e8q872.41705e8q88+1.21044e8q893.16068e8q901.41308e8q91+2.87750e7q921.46278e8q932.90356e8q94+1.58293e9q954.16511e8q965.64314e7q97+5.07849e8q98+5.67174e7q99+O(q100)q-38.2269 q^{2} -153.641 q^{3} +949.295 q^{4} +2107.84 q^{5} +5873.22 q^{6} +5202.74 q^{7} -16716.4 q^{8} +3922.60 q^{9} -80576.2 q^{10} +14459.1 q^{11} -145851. q^{12} -27160.2 q^{13} -198885. q^{14} -323851. q^{15} +152978. q^{16} +305985. q^{17} -149949. q^{18} +750970. q^{19} +2.00096e6 q^{20} -799355. q^{21} -552727. q^{22} +30312.0 q^{23} +2.56833e6 q^{24} +2.48987e6 q^{25} +1.03825e6 q^{26} +2.42145e6 q^{27} +4.93893e6 q^{28} +3.93647e6 q^{29} +1.23798e7 q^{30} +952075. q^{31} +2.71094e6 q^{32} -2.22152e6 q^{33} -1.16969e7 q^{34} +1.09665e7 q^{35} +3.72371e6 q^{36} -267723. q^{37} -2.87072e7 q^{38} +4.17293e6 q^{39} -3.52356e7 q^{40} +1.05316e7 q^{41} +3.05568e7 q^{42} +8.50472e6 q^{43} +1.37260e7 q^{44} +8.26822e6 q^{45} -1.15873e6 q^{46} +7.59559e6 q^{47} -2.35037e7 q^{48} -1.32851e7 q^{49} -9.51799e7 q^{50} -4.70120e7 q^{51} -2.57831e7 q^{52} +4.98917e7 q^{53} -9.25643e7 q^{54} +3.04775e7 q^{55} -8.69712e7 q^{56} -1.15380e8 q^{57} -1.50479e8 q^{58} +6.81953e6 q^{59} -3.07430e8 q^{60} +1.19460e8 q^{61} -3.63949e7 q^{62} +2.04083e7 q^{63} -1.81955e8 q^{64} -5.72495e7 q^{65} +8.49217e7 q^{66} -5.06638e7 q^{67} +2.90470e8 q^{68} -4.65716e6 q^{69} -4.19217e8 q^{70} -2.45300e8 q^{71} -6.55719e7 q^{72} +1.17975e8 q^{73} +1.02342e7 q^{74} -3.82546e8 q^{75} +7.12892e8 q^{76} +7.52270e7 q^{77} -1.59518e8 q^{78} +5.16564e8 q^{79} +3.22454e8 q^{80} -4.49242e8 q^{81} -4.02589e8 q^{82} +3.97742e7 q^{83} -7.58824e8 q^{84} +6.44969e8 q^{85} -3.25109e8 q^{86} -6.04804e8 q^{87} -2.41705e8 q^{88} +1.21044e8 q^{89} -3.16068e8 q^{90} -1.41308e8 q^{91} +2.87750e7 q^{92} -1.46278e8 q^{93} -2.90356e8 q^{94} +1.58293e9 q^{95} -4.16511e8 q^{96} -5.64314e7 q^{97} +5.07849e8 q^{98} +5.67174e7 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 76q+48q2+890q3+20736q4+5171q5+2688q6+38986q7+36507q8+518318q9+121093q10+120464q11+415744q12+480131q13+330849q14+544874q15++8731109606q99+O(q100) 76 q + 48 q^{2} + 890 q^{3} + 20736 q^{4} + 5171 q^{5} + 2688 q^{6} + 38986 q^{7} + 36507 q^{8} + 518318 q^{9} + 121093 q^{10} + 120464 q^{11} + 415744 q^{12} + 480131 q^{13} + 330849 q^{14} + 544874 q^{15}+ \cdots + 8731109606 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −38.2269 −1.68941 −0.844703 0.535235i 0.820223π-0.820223\pi
−0.844703 + 0.535235i 0.820223π0.820223\pi
33 −153.641 −1.09512 −0.547560 0.836766i 0.684443π-0.684443\pi
−0.547560 + 0.836766i 0.684443π0.684443\pi
44 949.295 1.85409
55 2107.84 1.50825 0.754124 0.656732i 0.228062π-0.228062\pi
0.754124 + 0.656732i 0.228062π0.228062\pi
66 5873.22 1.85010
77 5202.74 0.819013 0.409507 0.912307i 0.365701π-0.365701\pi
0.409507 + 0.912307i 0.365701π0.365701\pi
88 −16716.4 −1.44291
99 3922.60 0.199289
1010 −80576.2 −2.54804
1111 14459.1 0.297766 0.148883 0.988855i 0.452432π-0.452432\pi
0.148883 + 0.988855i 0.452432π0.452432\pi
1212 −145851. −2.03045
1313 −27160.2 −0.263748 −0.131874 0.991267i 0.542099π-0.542099\pi
−0.131874 + 0.991267i 0.542099π0.542099\pi
1414 −198885. −1.38365
1515 −323851. −1.65171
1616 152978. 0.583565
1717 305985. 0.888547 0.444274 0.895891i 0.353462π-0.353462\pi
0.444274 + 0.895891i 0.353462π0.353462\pi
1818 −149949. −0.336680
1919 750970. 1.32200 0.661000 0.750386i 0.270132π-0.270132\pi
0.661000 + 0.750386i 0.270132π0.270132\pi
2020 2.00096e6 2.79643
2121 −799355. −0.896918
2222 −552727. −0.503047
2323 30312.0 0.0225860 0.0112930 0.999936i 0.496405π-0.496405\pi
0.0112930 + 0.999936i 0.496405π0.496405\pi
2424 2.56833e6 1.58016
2525 2.48987e6 1.27481
2626 1.03825e6 0.445577
2727 2.42145e6 0.876875
2828 4.93893e6 1.51853
2929 3.93647e6 1.03351 0.516757 0.856132i 0.327139π-0.327139\pi
0.516757 + 0.856132i 0.327139π0.327139\pi
3030 1.23798e7 2.79041
3131 952075. 0.185158 0.0925792 0.995705i 0.470489π-0.470489\pi
0.0925792 + 0.995705i 0.470489π0.470489\pi
3232 2.71094e6 0.457029
3333 −2.22152e6 −0.326089
3434 −1.16969e7 −1.50112
3535 1.09665e7 1.23527
3636 3.72371e6 0.369500
3737 −267723. −0.0234843 −0.0117422 0.999931i 0.503738π-0.503738\pi
−0.0117422 + 0.999931i 0.503738π0.503738\pi
3838 −2.87072e7 −2.23339
3939 4.17293e6 0.288835
4040 −3.52356e7 −2.17626
4141 1.05316e7 0.582056 0.291028 0.956714i 0.406003π-0.406003\pi
0.291028 + 0.956714i 0.406003π0.406003\pi
4242 3.05568e7 1.51526
4343 8.50472e6 0.379360 0.189680 0.981846i 0.439255π-0.439255\pi
0.189680 + 0.981846i 0.439255π0.439255\pi
4444 1.37260e7 0.552085
4545 8.26822e6 0.300577
4646 −1.15873e6 −0.0381569
4747 7.59559e6 0.227050 0.113525 0.993535i 0.463786π-0.463786\pi
0.113525 + 0.993535i 0.463786π0.463786\pi
4848 −2.35037e7 −0.639074
4949 −1.32851e7 −0.329218
5050 −9.51799e7 −2.15367
5151 −4.70120e7 −0.973066
5252 −2.57831e7 −0.489012
5353 4.98917e7 0.868534 0.434267 0.900784i 0.357007π-0.357007\pi
0.434267 + 0.900784i 0.357007π0.357007\pi
5454 −9.25643e7 −1.48140
5555 3.04775e7 0.449105
5656 −8.69712e7 −1.18176
5757 −1.15380e8 −1.44775
5858 −1.50479e8 −1.74602
5959 6.81953e6 0.0732690 0.0366345 0.999329i 0.488336π-0.488336\pi
0.0366345 + 0.999329i 0.488336π0.488336\pi
6060 −3.07430e8 −3.06243
6161 1.19460e8 1.10469 0.552343 0.833617i 0.313734π-0.313734\pi
0.552343 + 0.833617i 0.313734π0.313734\pi
6262 −3.63949e7 −0.312808
6363 2.04083e7 0.163220
6464 −1.81955e8 −1.35567
6565 −5.72495e7 −0.397797
6666 8.49217e7 0.550897
6767 −5.06638e7 −0.307157 −0.153579 0.988136i 0.549080π-0.549080\pi
−0.153579 + 0.988136i 0.549080π0.549080\pi
6868 2.90470e8 1.64745
6969 −4.65716e6 −0.0247344
7070 −4.19217e8 −2.08688
7171 −2.45300e8 −1.14560 −0.572802 0.819694i 0.694144π-0.694144\pi
−0.572802 + 0.819694i 0.694144π0.694144\pi
7272 −6.55719e7 −0.287555
7373 1.17975e8 0.486225 0.243112 0.969998i 0.421832π-0.421832\pi
0.243112 + 0.969998i 0.421832π0.421832\pi
7474 1.02342e7 0.0396745
7575 −3.82546e8 −1.39607
7676 7.12892e8 2.45111
7777 7.52270e7 0.243874
7878 −1.59518e8 −0.487960
7979 5.16564e8 1.49212 0.746058 0.665882i 0.231944π-0.231944\pi
0.746058 + 0.665882i 0.231944π0.231944\pi
8080 3.22454e8 0.880161
8181 −4.49242e8 −1.15957
8282 −4.02589e8 −0.983330
8383 3.97742e7 0.0919919 0.0459960 0.998942i 0.485354π-0.485354\pi
0.0459960 + 0.998942i 0.485354π0.485354\pi
8484 −7.58824e8 −1.66297
8585 6.44969e8 1.34015
8686 −3.25109e8 −0.640893
8787 −6.04804e8 −1.13182
8888 −2.41705e8 −0.429649
8989 1.21044e8 0.204498 0.102249 0.994759i 0.467396π-0.467396\pi
0.102249 + 0.994759i 0.467396π0.467396\pi
9090 −3.16068e8 −0.507796
9191 −1.41308e8 −0.216013
9292 2.87750e7 0.0418765
9393 −1.46278e8 −0.202771
9494 −2.90356e8 −0.383579
9595 1.58293e9 1.99390
9696 −4.16511e8 −0.500502
9797 −5.64314e7 −0.0647214 −0.0323607 0.999476i 0.510303π-0.510303\pi
−0.0323607 + 0.999476i 0.510303π0.510303\pi
9898 5.07849e8 0.556182
9999 5.67174e7 0.0593414
100100 2.36362e9 2.36362
101101 −4.08268e8 −0.390391 −0.195195 0.980764i 0.562534π-0.562534\pi
−0.195195 + 0.980764i 0.562534π0.562534\pi
102102 1.79712e9 1.64390
103103 −6.99257e8 −0.612166 −0.306083 0.952005i 0.599018π-0.599018\pi
−0.306083 + 0.952005i 0.599018π0.599018\pi
104104 4.54022e8 0.380564
105105 −1.68491e9 −1.35277
106106 −1.90720e9 −1.46731
107107 −9.08297e8 −0.669886 −0.334943 0.942238i 0.608717π-0.608717\pi
−0.334943 + 0.942238i 0.608717π0.608717\pi
108108 2.29867e9 1.62581
109109 1.34403e7 0.00911989 0.00455994 0.999990i 0.498549π-0.498549\pi
0.00455994 + 0.999990i 0.498549π0.498549\pi
110110 −1.16506e9 −0.758720
111111 4.11333e7 0.0257181
112112 7.95905e8 0.477948
113113 −2.36910e7 −0.0136688 −0.00683440 0.999977i 0.502175π-0.502175\pi
−0.00683440 + 0.999977i 0.502175π0.502175\pi
114114 4.41061e9 2.44584
115115 6.38928e7 0.0340652
116116 3.73687e9 1.91623
117117 −1.06539e8 −0.0525619
118118 −2.60689e8 −0.123781
119119 1.59196e9 0.727732
120120 5.41363e9 2.38327
121121 −2.14888e9 −0.911335
122122 −4.56659e9 −1.86626
123123 −1.61808e9 −0.637422
124124 9.03800e8 0.343301
125125 1.13137e9 0.414484
126126 −7.80144e8 −0.275745
127127 1.36484e8 0.0465547 0.0232774 0.999729i 0.492590π-0.492590\pi
0.0232774 + 0.999729i 0.492590π0.492590\pi
128128 5.56759e9 1.83325
129129 −1.30667e9 −0.415445
130130 2.18847e9 0.672040
131131 −1.63921e9 −0.486310 −0.243155 0.969987i 0.578182π-0.578182\pi
−0.243155 + 0.969987i 0.578182π0.578182\pi
132132 −2.10887e9 −0.604600
133133 3.90710e9 1.08274
134134 1.93672e9 0.518913
135135 5.10402e9 1.32255
136136 −5.11499e9 −1.28209
137137 2.43866e9 0.591438 0.295719 0.955275i 0.404441π-0.404441\pi
0.295719 + 0.955275i 0.404441π0.404441\pi
138138 1.78029e8 0.0417864
139139 −4.13325e9 −0.939128 −0.469564 0.882899i 0.655589π-0.655589\pi
−0.469564 + 0.882899i 0.655589π0.655589\pi
140140 1.04105e10 2.29031
141141 −1.16700e9 −0.248647
142142 9.37704e9 1.93539
143143 −3.92713e8 −0.0785351
144144 6.00072e8 0.116298
145145 8.29745e9 1.55879
146146 −4.50982e9 −0.821431
147147 2.04114e9 0.360533
148148 −2.54148e8 −0.0435421
149149 −6.01056e9 −0.999025 −0.499513 0.866307i 0.666488π-0.666488\pi
−0.499513 + 0.866307i 0.666488π0.666488\pi
150150 1.46235e10 2.35853
151151 1.06469e10 1.66658 0.833291 0.552834i 0.186454π-0.186454\pi
0.833291 + 0.552834i 0.186454π0.186454\pi
152152 −1.25535e10 −1.90752
153153 1.20026e9 0.177077
154154 −2.87570e9 −0.412002
155155 2.00682e9 0.279265
156156 3.96134e9 0.535528
157157 −6.94726e9 −0.912567 −0.456284 0.889834i 0.650820π-0.650820\pi
−0.456284 + 0.889834i 0.650820π0.650820\pi
158158 −1.97466e10 −2.52079
159159 −7.66542e9 −0.951149
160160 5.71422e9 0.689314
161161 1.57705e8 0.0184982
162162 1.71731e10 1.95899
163163 −9.81379e9 −1.08891 −0.544455 0.838790i 0.683264π-0.683264\pi
−0.544455 + 0.838790i 0.683264π0.683264\pi
164164 9.99755e9 1.07919
165165 −4.68260e9 −0.491824
166166 −1.52044e9 −0.155412
167167 1.52995e10 1.52213 0.761067 0.648673i 0.224676π-0.224676\pi
0.761067 + 0.648673i 0.224676π0.224676\pi
168168 1.33624e10 1.29417
169169 −9.86682e9 −0.930437
170170 −2.46551e10 −2.26406
171171 2.94576e9 0.263460
172172 8.07349e9 0.703369
173173 1.50390e10 1.27647 0.638235 0.769842i 0.279665π-0.279665\pi
0.638235 + 0.769842i 0.279665π0.279665\pi
174174 2.31198e10 1.91211
175175 1.29541e10 1.04409
176176 2.21193e9 0.173766
177177 −1.04776e9 −0.0802384
178178 −4.62715e9 −0.345480
179179 2.77580e8 0.0202092 0.0101046 0.999949i 0.496784π-0.496784\pi
0.0101046 + 0.999949i 0.496784π0.496784\pi
180180 7.84898e9 0.557297
181181 −1.00484e10 −0.695897 −0.347948 0.937514i 0.613122π-0.613122\pi
−0.347948 + 0.937514i 0.613122π0.613122\pi
182182 5.40175e9 0.364933
183183 −1.83540e10 −1.20976
184184 −5.06708e8 −0.0325895
185185 −5.64317e8 −0.0354202
186186 5.59175e9 0.342562
187187 4.42428e9 0.264579
188188 7.21046e9 0.420971
189189 1.25981e10 0.718172
190190 −6.05103e10 −3.36851
191191 −1.52351e10 −0.828315 −0.414158 0.910205i 0.635924π-0.635924\pi
−0.414158 + 0.910205i 0.635924π0.635924\pi
192192 2.79558e10 1.48463
193193 −3.17609e9 −0.164772 −0.0823862 0.996600i 0.526254π-0.526254\pi
−0.0823862 + 0.996600i 0.526254π0.526254\pi
194194 2.15720e9 0.109341
195195 8.79587e9 0.435636
196196 −1.26115e10 −0.610400
197197 1.50614e9 0.0712470
198198 −2.16813e9 −0.100252
199199 1.28543e10 0.581044 0.290522 0.956868i 0.406171π-0.406171\pi
0.290522 + 0.956868i 0.406171π0.406171\pi
200200 −4.16217e10 −1.83944
201201 7.78404e9 0.336374
202202 1.56068e10 0.659529
203203 2.04804e10 0.846461
204204 −4.46282e10 −1.80415
205205 2.21988e10 0.877885
206206 2.67304e10 1.03420
207207 1.18902e8 0.00450113
208208 −4.15492e9 −0.153914
209209 1.08584e10 0.393646
210210 6.44090e10 2.28539
211211 3.19945e10 1.11123 0.555616 0.831439i 0.312482π-0.312482\pi
0.555616 + 0.831439i 0.312482π0.312482\pi
212212 4.73619e10 1.61034
213213 3.76881e10 1.25457
214214 3.47214e10 1.13171
215215 1.79266e10 0.572169
216216 −4.04779e10 −1.26525
217217 4.95340e9 0.151647
218218 −5.13781e8 −0.0154072
219219 −1.81258e10 −0.532475
220220 2.89322e10 0.832682
221221 −8.31064e9 −0.234352
222222 −1.57240e9 −0.0434484
223223 6.58160e10 1.78221 0.891107 0.453793i 0.149929π-0.149929\pi
0.891107 + 0.453793i 0.149929π0.149929\pi
224224 1.41043e10 0.374313
225225 9.76675e9 0.254056
226226 9.05634e8 0.0230922
227227 −5.91660e10 −1.47896 −0.739479 0.673179i 0.764928π-0.764928\pi
−0.739479 + 0.673179i 0.764928π0.764928\pi
228228 −1.09530e11 −2.68426
229229 −3.32122e10 −0.798065 −0.399033 0.916937i 0.630654π-0.630654\pi
−0.399033 + 0.916937i 0.630654π0.630654\pi
230230 −2.44242e9 −0.0575500
231231 −1.15580e10 −0.267072
232232 −6.58038e10 −1.49126
233233 −1.36784e9 −0.0304041 −0.0152021 0.999884i 0.504839π-0.504839\pi
−0.0152021 + 0.999884i 0.504839π0.504839\pi
234234 4.07265e9 0.0887985
235235 1.60103e10 0.342447
236236 6.47375e9 0.135847
237237 −7.93655e10 −1.63405
238238 −6.08558e10 −1.22943
239239 −8.40292e10 −1.66586 −0.832932 0.553375i 0.813339π-0.813339\pi
−0.832932 + 0.553375i 0.813339π0.813339\pi
240240 −4.95421e10 −0.963882
241241 5.38143e9 0.102759 0.0513796 0.998679i 0.483638π-0.483638\pi
0.0513796 + 0.998679i 0.483638π0.483638\pi
242242 8.21451e10 1.53962
243243 2.13608e10 0.392997
244244 1.13403e11 2.04819
245245 −2.80029e10 −0.496542
246246 6.18542e10 1.07686
247247 −2.03965e10 −0.348674
248248 −1.59153e10 −0.267167
249249 −6.11095e9 −0.100742
250250 −4.32486e10 −0.700232
251251 −5.96891e10 −0.949212 −0.474606 0.880198i 0.657409π-0.657409\pi
−0.474606 + 0.880198i 0.657409π0.657409\pi
252252 1.93735e10 0.302625
253253 4.38284e8 0.00672533
254254 −5.21734e9 −0.0786498
255255 −9.90937e10 −1.46763
256256 −1.19671e11 −1.74144
257257 −1.06712e11 −1.52585 −0.762926 0.646486i 0.776238π-0.776238\pi
−0.762926 + 0.646486i 0.776238π0.776238\pi
258258 4.99501e10 0.701855
259259 −1.39289e9 −0.0192340
260260 −5.43466e10 −0.737552
261261 1.54412e10 0.205968
262262 6.26619e10 0.821576
263263 1.62217e10 0.209072 0.104536 0.994521i 0.466664π-0.466664\pi
0.104536 + 0.994521i 0.466664π0.466664\pi
264264 3.71358e10 0.470517
265265 1.05164e11 1.30996
266266 −1.49356e11 −1.82918
267267 −1.85974e10 −0.223950
268268 −4.80949e10 −0.569498
269269 −1.05738e11 −1.23125 −0.615624 0.788040i 0.711096π-0.711096\pi
−0.615624 + 0.788040i 0.711096π0.711096\pi
270270 −1.95111e11 −2.23432
271271 1.03622e11 1.16705 0.583527 0.812094i 0.301672π-0.301672\pi
0.583527 + 0.812094i 0.301672π0.301672\pi
272272 4.68091e10 0.518525
273273 2.17107e10 0.236560
274274 −9.32225e10 −0.999179
275275 3.60013e10 0.379595
276276 −4.42102e9 −0.0458598
277277 1.03616e11 1.05747 0.528734 0.848788i 0.322667π-0.322667\pi
0.528734 + 0.848788i 0.322667π0.322667\pi
278278 1.58001e11 1.58657
279279 3.73461e9 0.0369000
280280 −1.83321e11 −1.78239
281281 −4.10264e10 −0.392541 −0.196271 0.980550i 0.562883π-0.562883\pi
−0.196271 + 0.980550i 0.562883π0.562883\pi
282282 4.46106e10 0.420066
283283 8.45522e9 0.0783584 0.0391792 0.999232i 0.487526π-0.487526\pi
0.0391792 + 0.999232i 0.487526π0.487526\pi
284284 −2.32862e11 −2.12405
285285 −2.43202e11 −2.18356
286286 1.50122e10 0.132678
287287 5.47929e10 0.476712
288288 1.06339e10 0.0910808
289289 −2.49608e10 −0.210483
290290 −3.17186e11 −2.63344
291291 8.67018e9 0.0708777
292292 1.11993e11 0.901505
293293 7.16759e10 0.568158 0.284079 0.958801i 0.408312π-0.408312\pi
0.284079 + 0.958801i 0.408312π0.408312\pi
294294 −7.80265e10 −0.609086
295295 1.43745e10 0.110508
296296 4.47537e9 0.0338857
297297 3.50120e10 0.261104
298298 2.29765e11 1.68776
299299 −8.23280e8 −0.00595700
300300 −3.63149e11 −2.58845
301301 4.42478e10 0.310701
302302 −4.06998e11 −2.81553
303303 6.27268e10 0.427525
304304 1.14882e11 0.771473
305305 2.51803e11 1.66614
306306 −4.58822e10 −0.299156
307307 1.84404e11 1.18481 0.592404 0.805641i 0.298179π-0.298179\pi
0.592404 + 0.805641i 0.298179π0.298179\pi
308308 7.14127e10 0.452165
309309 1.07435e11 0.670395
310310 −7.67146e10 −0.471792
311311 −6.53057e9 −0.0395849 −0.0197924 0.999804i 0.506301π-0.506301\pi
−0.0197924 + 0.999804i 0.506301π0.506301\pi
312312 −6.97565e10 −0.416763
313313 2.62007e11 1.54299 0.771495 0.636235i 0.219509π-0.219509\pi
0.771495 + 0.636235i 0.219509π0.219509\pi
314314 2.65572e11 1.54170
315315 4.30174e10 0.246176
316316 4.90372e11 2.76652
317317 −1.33176e11 −0.740727 −0.370363 0.928887i 0.620767π-0.620767\pi
−0.370363 + 0.928887i 0.620767π0.620767\pi
318318 2.93025e11 1.60688
319319 5.69179e10 0.307745
320320 −3.83533e11 −2.04469
321321 1.39552e11 0.733606
322322 −6.02858e9 −0.0312510
323323 2.29786e11 1.17466
324324 −4.26463e11 −2.14995
325325 −6.76254e10 −0.336229
326326 3.75151e11 1.83961
327327 −2.06498e9 −0.00998738
328328 −1.76050e11 −0.839854
329329 3.95179e10 0.185957
330330 1.79001e11 0.830890
331331 2.27005e11 1.03946 0.519732 0.854329i 0.326032π-0.326032\pi
0.519732 + 0.854329i 0.326032π0.326032\pi
332332 3.77574e10 0.170561
333333 −1.05017e9 −0.00468016
334334 −5.84852e11 −2.57150
335335 −1.06791e11 −0.463269
336336 −1.22284e11 −0.523410
337337 −7.17572e9 −0.0303062 −0.0151531 0.999885i 0.504824π-0.504824\pi
−0.0151531 + 0.999885i 0.504824π0.504824\pi
338338 3.77178e11 1.57189
339339 3.63991e9 0.0149690
340340 6.12265e11 2.48476
341341 1.37662e10 0.0551339
342342 −1.12607e11 −0.445090
343343 −2.79068e11 −1.08865
344344 −1.42169e11 −0.547382
345345 −9.81656e9 −0.0373055
346346 −5.74893e11 −2.15648
347347 8.58364e10 0.317826 0.158913 0.987293i 0.449201π-0.449201\pi
0.158913 + 0.987293i 0.449201π0.449201\pi
348348 −5.74137e11 −2.09850
349349 1.96745e11 0.709888 0.354944 0.934888i 0.384500π-0.384500\pi
0.354944 + 0.934888i 0.384500π0.384500\pi
350350 −4.95196e11 −1.76389
351351 −6.57671e10 −0.231274
352352 3.91977e10 0.136088
353353 5.13579e11 1.76044 0.880219 0.474567i 0.157395π-0.157395\pi
0.880219 + 0.474567i 0.157395π0.157395\pi
354354 4.00526e10 0.135555
355355 −5.17053e11 −1.72785
356356 1.14907e11 0.379159
357357 −2.44591e11 −0.796954
358358 −1.06110e10 −0.0341416
359359 1.92052e11 0.610229 0.305115 0.952316i 0.401305π-0.401305\pi
0.305115 + 0.952316i 0.401305π0.401305\pi
360360 −1.38215e11 −0.433705
361361 2.41268e11 0.747684
362362 3.84120e11 1.17565
363363 3.30157e11 0.998022
364364 −1.34143e11 −0.400508
365365 2.48672e11 0.733347
366366 7.01616e11 2.04378
367367 −7.10357e10 −0.204399 −0.102200 0.994764i 0.532588π-0.532588\pi
−0.102200 + 0.994764i 0.532588π0.532588\pi
368368 4.63707e9 0.0131804
369369 4.13111e10 0.115997
370370 2.15721e10 0.0598390
371371 2.59573e11 0.711341
372372 −1.38861e11 −0.375956
373373 5.97727e11 1.59887 0.799435 0.600753i 0.205132π-0.205132\pi
0.799435 + 0.600753i 0.205132π0.205132\pi
374374 −1.69127e11 −0.446981
375375 −1.73824e11 −0.453910
376376 −1.26971e11 −0.327612
377377 −1.06916e11 −0.272587
378378 −4.81588e11 −1.21328
379379 6.94367e11 1.72867 0.864336 0.502914i 0.167739π-0.167739\pi
0.864336 + 0.502914i 0.167739π0.167739\pi
380380 1.50266e12 3.69688
381381 −2.09695e10 −0.0509830
382382 5.82391e11 1.39936
383383 −2.01772e11 −0.479145 −0.239572 0.970879i 0.577007π-0.577007\pi
−0.239572 + 0.970879i 0.577007π0.577007\pi
384384 −8.55411e11 −2.00763
385385 1.58567e11 0.367823
386386 1.21412e11 0.278367
387387 3.33606e10 0.0756022
388388 −5.35701e10 −0.119999
389389 3.61861e9 0.00801250 0.00400625 0.999992i 0.498725π-0.498725\pi
0.00400625 + 0.999992i 0.498725π0.498725\pi
390390 −3.36239e11 −0.735965
391391 9.27502e9 0.0200687
392392 2.22080e11 0.475031
393393 2.51850e11 0.532569
394394 −5.75750e10 −0.120365
395395 1.08883e12 2.25048
396396 5.38415e10 0.110024
397397 5.85838e11 1.18364 0.591821 0.806069i 0.298409π-0.298409\pi
0.591821 + 0.806069i 0.298409π0.298409\pi
398398 −4.91379e11 −0.981619
399399 −6.00291e11 −1.18573
400400 3.80895e11 0.743936
401401 5.63448e11 1.08819 0.544094 0.839024i 0.316873π-0.316873\pi
0.544094 + 0.839024i 0.316873π0.316873\pi
402402 −2.97560e11 −0.568272
403403 −2.58586e10 −0.0488351
404404 −3.87567e11 −0.723821
405405 −9.46931e11 −1.74892
406406 −7.82903e11 −1.43002
407407 −3.87104e9 −0.00699283
408408 7.85872e11 1.40405
409409 −1.05392e12 −1.86232 −0.931161 0.364608i 0.881203π-0.881203\pi
−0.931161 + 0.364608i 0.881203π0.881203\pi
410410 −8.48592e11 −1.48310
411411 −3.74679e11 −0.647696
412412 −6.63801e11 −1.13501
413413 3.54802e10 0.0600083
414414 −4.54524e9 −0.00760423
415415 8.38376e10 0.138747
416416 −7.36297e10 −0.120540
417417 6.35037e11 1.02846
418418 −4.15082e11 −0.665029
419419 3.21361e11 0.509367 0.254683 0.967025i 0.418029π-0.418029\pi
0.254683 + 0.967025i 0.418029π0.418029\pi
420420 −1.59948e12 −2.50817
421421 −9.38143e11 −1.45546 −0.727729 0.685865i 0.759424π-0.759424\pi
−0.727729 + 0.685865i 0.759424π0.759424\pi
422422 −1.22305e12 −1.87732
423423 2.97945e10 0.0452485
424424 −8.34011e11 −1.25321
425425 7.61863e11 1.13273
426426 −1.44070e12 −2.11948
427427 6.21520e11 0.904752
428428 −8.62242e11 −1.24203
429429 6.03369e10 0.0860054
430430 −6.85278e11 −0.966626
431431 9.37611e11 1.30881 0.654403 0.756146i 0.272920π-0.272920\pi
0.654403 + 0.756146i 0.272920π0.272920\pi
432432 3.70428e11 0.511714
433433 7.64066e11 1.04456 0.522282 0.852773i 0.325081π-0.325081\pi
0.522282 + 0.852773i 0.325081π0.325081\pi
434434 −1.89353e11 −0.256194
435435 −1.27483e12 −1.70707
436436 1.27588e10 0.0169091
437437 2.27634e10 0.0298586
438438 6.92893e11 0.899566
439439 −2.67401e10 −0.0343616 −0.0171808 0.999852i 0.505469π-0.505469\pi
−0.0171808 + 0.999852i 0.505469π0.505469\pi
440440 −5.09476e11 −0.648017
441441 −5.21122e10 −0.0656094
442442 3.17690e11 0.395916
443443 −2.85059e10 −0.0351656 −0.0175828 0.999845i 0.505597π-0.505597\pi
−0.0175828 + 0.999845i 0.505597π0.505597\pi
444444 3.90476e10 0.0476838
445445 2.55142e11 0.308434
446446 −2.51594e12 −3.01088
447447 9.23469e11 1.09405
448448 −9.46666e11 −1.11031
449449 −1.51978e12 −1.76471 −0.882353 0.470589i 0.844042π-0.844042\pi
−0.882353 + 0.470589i 0.844042π0.844042\pi
450450 −3.73353e11 −0.429203
451451 1.52277e11 0.173317
452452 −2.24898e10 −0.0253432
453453 −1.63580e12 −1.82511
454454 2.26173e12 2.49856
455455 −2.97854e11 −0.325801
456456 1.92874e12 2.08897
457457 5.95490e11 0.638633 0.319317 0.947648i 0.396547π-0.396547\pi
0.319317 + 0.947648i 0.396547π0.396547\pi
458458 1.26960e12 1.34826
459459 7.40927e11 0.779145
460460 6.06531e10 0.0631601
461461 −1.24624e12 −1.28513 −0.642565 0.766231i 0.722130π-0.722130\pi
−0.642565 + 0.766231i 0.722130π0.722130\pi
462462 4.41825e11 0.451192
463463 1.26834e12 1.28269 0.641346 0.767252i 0.278376π-0.278376\pi
0.641346 + 0.767252i 0.278376π0.278376\pi
464464 6.02194e11 0.603122
465465 −3.08330e11 −0.305829
466466 5.22881e10 0.0513649
467467 −7.05768e11 −0.686651 −0.343325 0.939217i 0.611553π-0.611553\pi
−0.343325 + 0.939217i 0.611553π0.611553\pi
468468 −1.01137e11 −0.0974547
469469 −2.63590e11 −0.251566
470470 −6.12024e11 −0.578533
471471 1.06738e12 0.999371
472472 −1.13998e11 −0.105720
473473 1.22971e11 0.112961
474474 3.03390e12 2.76057
475475 1.86982e12 1.68530
476476 1.51124e12 1.34928
477477 1.95705e11 0.173089
478478 3.21217e12 2.81432
479479 1.12193e12 0.973768 0.486884 0.873467i 0.338133π-0.338133\pi
0.486884 + 0.873467i 0.338133π0.338133\pi
480480 −8.77939e11 −0.754882
481481 7.27142e9 0.00619393
482482 −2.05715e11 −0.173602
483483 −2.42300e10 −0.0202578
484484 −2.03992e12 −1.68970
485485 −1.18948e11 −0.0976159
486486 −8.16556e11 −0.663931
487487 8.32354e11 0.670545 0.335272 0.942121i 0.391172π-0.391172\pi
0.335272 + 0.942121i 0.391172π0.391172\pi
488488 −1.99695e12 −1.59396
489489 1.50780e12 1.19249
490490 1.07046e12 0.838861
491491 1.54507e12 1.19973 0.599863 0.800103i 0.295222π-0.295222\pi
0.599863 + 0.800103i 0.295222π0.295222\pi
492492 −1.53604e12 −1.18184
493493 1.20450e12 0.918326
494494 7.79696e11 0.589053
495495 1.19551e11 0.0895015
496496 1.45647e11 0.108052
497497 −1.27623e12 −0.938264
498498 2.33603e11 0.170194
499499 1.13614e12 0.820310 0.410155 0.912016i 0.365475π-0.365475\pi
0.410155 + 0.912016i 0.365475π0.365475\pi
500500 1.07400e12 0.768492
501501 −2.35063e12 −1.66692
502502 2.28173e12 1.60360
503503 −1.29522e12 −0.902170 −0.451085 0.892481i 0.648963π-0.648963\pi
−0.451085 + 0.892481i 0.648963π0.648963\pi
504504 −3.41153e11 −0.235512
505505 −8.60565e11 −0.588806
506506 −1.67542e10 −0.0113618
507507 1.51595e12 1.01894
508508 1.29563e11 0.0863167
509509 −9.48803e11 −0.626536 −0.313268 0.949665i 0.601424π-0.601424\pi
−0.313268 + 0.949665i 0.601424π0.601424\pi
510510 3.78804e12 2.47942
511511 6.13793e11 0.398224
512512 1.72403e12 1.10874
513513 1.81843e12 1.15923
514514 4.07925e12 2.57778
515515 −1.47392e12 −0.923298
516516 −1.24042e12 −0.770274
517517 1.09826e11 0.0676077
518518 5.32459e10 0.0324940
519519 −2.31060e12 −1.39789
520520 9.57007e11 0.573984
521521 −2.46207e12 −1.46396 −0.731981 0.681325i 0.761404π-0.761404\pi
−0.731981 + 0.681325i 0.761404π0.761404\pi
522522 −5.90269e11 −0.347963
523523 2.42753e12 1.41875 0.709377 0.704829i 0.248976π-0.248976\pi
0.709377 + 0.704829i 0.248976π0.248976\pi
524524 −1.55609e12 −0.901664
525525 −1.99029e12 −1.14340
526526 −6.20106e11 −0.353208
527527 2.91321e11 0.164522
528528 −3.39843e11 −0.190295
529529 −1.80023e12 −0.999490
530530 −4.02008e12 −2.21306
531531 2.67503e10 0.0146017
532532 3.70899e12 2.00749
533533 −2.86040e11 −0.153516
534534 7.10921e11 0.378343
535535 −1.91455e12 −1.01035
536536 8.46917e11 0.443200
537537 −4.26477e10 −0.0221315
538538 4.04203e12 2.08008
539539 −1.92091e11 −0.0980298
540540 4.84522e12 2.45212
541541 −3.08748e12 −1.54959 −0.774795 0.632213i 0.782147π-0.782147\pi
−0.774795 + 0.632213i 0.782147π0.782147\pi
542542 −3.96115e12 −1.97163
543543 1.54385e12 0.762091
544544 8.29507e11 0.406092
545545 2.83300e10 0.0137551
546546 −8.29931e11 −0.399646
547547 7.65281e11 0.365492 0.182746 0.983160i 0.441501π-0.441501\pi
0.182746 + 0.983160i 0.441501π0.441501\pi
548548 2.31501e12 1.09658
549549 4.68594e11 0.220151
550550 −1.37622e12 −0.641291
551551 2.95617e12 1.36630
552552 7.78512e10 0.0356894
553553 2.68755e12 1.22206
554554 −3.96091e12 −1.78649
555555 8.67023e10 0.0387893
556556 −3.92367e12 −1.74123
557557 −1.37829e12 −0.606727 −0.303364 0.952875i 0.598110π-0.598110\pi
−0.303364 + 0.952875i 0.598110π0.598110\pi
558558 −1.42762e11 −0.0623390
559559 −2.30990e11 −0.100055
560560 1.67764e12 0.720863
561561 −6.79752e11 −0.289746
562562 1.56831e12 0.663161
563563 2.62254e12 1.10011 0.550054 0.835129i 0.314607π-0.314607\pi
0.550054 + 0.835129i 0.314607π0.314607\pi
564564 −1.10782e12 −0.461014
565565 −4.99369e10 −0.0206160
566566 −3.23217e11 −0.132379
567567 −2.33729e12 −0.949705
568568 4.10054e12 1.65300
569569 9.63896e11 0.385501 0.192750 0.981248i 0.438259π-0.438259\pi
0.192750 + 0.981248i 0.438259π0.438259\pi
570570 9.29687e12 3.68893
571571 −2.36629e12 −0.931550 −0.465775 0.884903i 0.654224π-0.654224\pi
−0.465775 + 0.884903i 0.654224π0.654224\pi
572572 −3.72801e11 −0.145611
573573 2.34074e12 0.907105
574574 −2.09456e12 −0.805360
575575 7.54727e10 0.0287929
576576 −7.13738e11 −0.270170
577577 −3.34486e11 −0.125628 −0.0628140 0.998025i 0.520008π-0.520008\pi
−0.0628140 + 0.998025i 0.520008π0.520008\pi
578578 9.54173e11 0.355592
579579 4.87977e11 0.180446
580580 7.87673e12 2.89015
581581 2.06935e11 0.0753426
582582 −3.31434e11 −0.119741
583583 7.21390e11 0.258620
584584 −1.97212e12 −0.701578
585585 −2.24567e11 −0.0792764
586586 −2.73995e12 −0.959849
587587 2.97724e12 1.03501 0.517503 0.855682i 0.326862π-0.326862\pi
0.517503 + 0.855682i 0.326862π0.326862\pi
588588 1.93765e12 0.668461
589589 7.14980e11 0.244779
590590 −5.49492e11 −0.186693
591591 −2.31405e11 −0.0780241
592592 −4.09558e10 −0.0137046
593593 −2.95484e12 −0.981269 −0.490634 0.871366i 0.663235π-0.663235\pi
−0.490634 + 0.871366i 0.663235π0.663235\pi
594594 −1.33840e12 −0.441110
595595 3.35560e12 1.09760
596596 −5.70579e12 −1.85228
597597 −1.97495e12 −0.636313
598598 3.14714e10 0.0100638
599599 −2.19881e12 −0.697857 −0.348929 0.937149i 0.613454π-0.613454\pi
−0.348929 + 0.937149i 0.613454π0.613454\pi
600600 6.39480e12 2.01440
601601 1.04958e12 0.328156 0.164078 0.986447i 0.447535π-0.447535\pi
0.164078 + 0.986447i 0.447535π0.447535\pi
602602 −1.69146e12 −0.524900
603603 −1.98734e11 −0.0612130
604604 1.01070e13 3.09000
605605 −4.52950e12 −1.37452
606606 −2.39785e12 −0.722263
607607 4.96644e11 0.148490 0.0742449 0.997240i 0.476345π-0.476345\pi
0.0742449 + 0.997240i 0.476345π0.476345\pi
608608 2.03583e12 0.604193
609609 −3.14664e12 −0.926977
610610 −9.62564e12 −2.81479
611611 −2.06298e11 −0.0598839
612612 1.13940e12 0.328318
613613 −2.11053e11 −0.0603699 −0.0301849 0.999544i 0.509610π-0.509610\pi
−0.0301849 + 0.999544i 0.509610π0.509610\pi
614614 −7.04919e12 −2.00162
615615 −3.41065e12 −0.961390
616616 −1.25753e12 −0.351888
617617 −3.15337e12 −0.875974 −0.437987 0.898981i 0.644308π-0.644308\pi
−0.437987 + 0.898981i 0.644308π0.644308\pi
618618 −4.10689e12 −1.13257
619619 1.40671e12 0.385121 0.192561 0.981285i 0.438321π-0.438321\pi
0.192561 + 0.981285i 0.438321π0.438321\pi
620620 1.90507e12 0.517783
621621 7.33988e10 0.0198051
622622 2.49643e11 0.0668749
623623 6.29762e11 0.167487
624624 6.38367e11 0.168554
625625 −2.47828e12 −0.649667
626626 −1.00157e13 −2.60674
627627 −1.66829e12 −0.431090
628628 −6.59500e12 −1.69198
629629 −8.19193e10 −0.0208669
630630 −1.64442e12 −0.415892
631631 4.63510e12 1.16393 0.581966 0.813213i 0.302284π-0.302284\pi
0.581966 + 0.813213i 0.302284π0.302284\pi
632632 −8.63511e12 −2.15298
633633 −4.91568e12 −1.21693
634634 5.09089e12 1.25139
635635 2.87686e11 0.0702160
636636 −7.27674e12 −1.76352
637637 3.60827e11 0.0868304
638638 −2.17580e12 −0.519906
639639 −9.62213e11 −0.228306
640640 1.17356e13 2.76500
641641 2.74470e12 0.642145 0.321073 0.947055i 0.395957π-0.395957\pi
0.321073 + 0.947055i 0.395957π0.395957\pi
642642 −5.33463e12 −1.23936
643643 −4.81477e12 −1.11078 −0.555388 0.831591i 0.687430π-0.687430\pi
−0.555388 + 0.831591i 0.687430π0.687430\pi
644644 1.49709e11 0.0342974
645645 −2.75426e12 −0.626594
646646 −8.78400e12 −1.98448
647647 −7.31467e12 −1.64106 −0.820531 0.571602i 0.806322π-0.806322\pi
−0.820531 + 0.571602i 0.806322π0.806322\pi
648648 7.50973e12 1.67316
649649 9.86044e10 0.0218170
650650 2.58511e12 0.568027
651651 −7.61045e11 −0.166072
652652 −9.31618e12 −2.01894
653653 −4.80438e12 −1.03402 −0.517009 0.855980i 0.672955π-0.672955\pi
−0.517009 + 0.855980i 0.672955π0.672955\pi
654654 7.89379e10 0.0168727
655655 −3.45519e12 −0.733477
656656 1.61110e12 0.339668
657657 4.62769e11 0.0968991
658658 −1.51065e12 −0.314156
659659 −3.89676e12 −0.804858 −0.402429 0.915451i 0.631834π-0.631834\pi
−0.402429 + 0.915451i 0.631834π0.631834\pi
660660 −4.44517e12 −0.911887
661661 3.64506e12 0.742673 0.371336 0.928498i 0.378900π-0.378900\pi
0.371336 + 0.928498i 0.378900π0.378900\pi
662662 −8.67769e12 −1.75608
663663 1.27686e12 0.256644
664664 −6.64882e11 −0.132736
665665 8.23555e12 1.63303
666666 4.01447e10 0.00790669
667667 1.19322e11 0.0233429
668668 1.45237e13 2.82218
669669 −1.01121e13 −1.95174
670670 4.08229e12 0.782650
671671 1.72729e12 0.328938
672672 −2.16700e12 −0.409918
673673 5.49056e12 1.03169 0.515844 0.856682i 0.327478π-0.327478\pi
0.515844 + 0.856682i 0.327478π0.327478\pi
674674 2.74306e11 0.0511994
675675 6.02908e12 1.11785
676676 −9.36652e12 −1.72512
677677 −1.69761e12 −0.310591 −0.155296 0.987868i 0.549633π-0.549633\pi
−0.155296 + 0.987868i 0.549633π0.549633\pi
678678 −1.39143e11 −0.0252887
679679 −2.93598e11 −0.0530077
680680 −1.07816e13 −1.93371
681681 9.09033e12 1.61964
682682 −5.26238e11 −0.0931435
683683 −7.52172e9 −0.00132259 −0.000661293 1.00000i 0.500210π-0.500210\pi
−0.000661293 1.00000i 0.500210π0.500210\pi
684684 2.79639e12 0.488478
685685 5.14031e12 0.892036
686686 1.06679e13 1.83917
687687 5.10277e12 0.873978
688688 1.30104e12 0.221381
689689 −1.35507e12 −0.229074
690690 3.75256e11 0.0630242
691691 −3.24633e12 −0.541679 −0.270840 0.962625i 0.587301π-0.587301\pi
−0.270840 + 0.962625i 0.587301π0.587301\pi
692692 1.42764e13 2.36669
693693 2.95086e11 0.0486014
694694 −3.28126e12 −0.536937
695695 −8.71222e12 −1.41644
696696 1.01102e13 1.63311
697697 3.22250e12 0.517185
698698 −7.52096e12 −1.19929
699699 2.10156e11 0.0332962
700700 1.22973e13 1.93583
701701 1.14756e12 0.179492 0.0897462 0.995965i 0.471394π-0.471394\pi
0.0897462 + 0.995965i 0.471394π0.471394\pi
702702 2.51407e12 0.390715
703703 −2.01052e11 −0.0310463
704704 −2.63092e12 −0.403673
705705 −2.45984e12 −0.375021
706706 −1.96325e13 −2.97410
707707 −2.12411e12 −0.319735
708708 −9.94634e11 −0.148769
709709 −1.08250e13 −1.60886 −0.804432 0.594044i 0.797530π-0.797530\pi
−0.804432 + 0.594044i 0.797530π0.797530\pi
710710 1.97653e13 2.91905
711711 2.02627e12 0.297362
712712 −2.02343e12 −0.295072
713713 2.88592e10 0.00418198
714714 9.34995e12 1.34638
715715 −8.27777e11 −0.118450
716716 2.63505e11 0.0374698
717717 1.29103e13 1.82432
718718 −7.34154e12 −1.03093
719719 −7.26303e12 −1.01353 −0.506766 0.862083i 0.669159π-0.669159\pi
−0.506766 + 0.862083i 0.669159π0.669159\pi
720720 1.26486e12 0.175406
721721 −3.63805e12 −0.501372
722722 −9.22294e12 −1.26314
723723 −8.26809e11 −0.112534
724724 −9.53893e12 −1.29026
725725 9.80129e12 1.31753
726726 −1.26209e13 −1.68606
727727 −7.97647e11 −0.105902 −0.0529512 0.998597i 0.516863π-0.516863\pi
−0.0529512 + 0.998597i 0.516863π0.516863\pi
728728 2.36216e12 0.311687
729729 5.56054e12 0.729194
730730 −9.50597e12 −1.23892
731731 2.60232e12 0.337080
732732 −1.74234e13 −2.24301
733733 −3.30785e12 −0.423232 −0.211616 0.977353i 0.567873π-0.567873\pi
−0.211616 + 0.977353i 0.567873π0.567873\pi
734734 2.71547e12 0.345313
735735 4.30240e12 0.543773
736736 8.21737e10 0.0103225
737737 −7.32554e11 −0.0914609
738738 −1.57919e12 −0.195966
739739 9.17440e12 1.13156 0.565780 0.824556i 0.308575π-0.308575\pi
0.565780 + 0.824556i 0.308575π0.308575\pi
740740 −5.35704e11 −0.0656722
741741 3.13375e12 0.381840
742742 −9.92269e12 −1.20174
743743 1.29134e13 1.55451 0.777253 0.629189i 0.216613π-0.216613\pi
0.777253 + 0.629189i 0.216613π0.216613\pi
744744 2.44524e12 0.292580
745745 −1.26693e13 −1.50678
746746 −2.28492e13 −2.70114
747747 1.56018e11 0.0183329
748748 4.19995e12 0.490554
749749 −4.72563e12 −0.548645
750750 6.64477e12 0.766839
751751 1.13700e13 1.30431 0.652153 0.758087i 0.273866π-0.273866\pi
0.652153 + 0.758087i 0.273866π0.273866\pi
752752 1.16196e12 0.132498
753753 9.17070e12 1.03950
754754 4.08705e12 0.460510
755755 2.24420e13 2.51362
756756 1.19594e13 1.33156
757757 6.02655e12 0.667017 0.333509 0.942747i 0.391767π-0.391767\pi
0.333509 + 0.942747i 0.391767π0.391767\pi
758758 −2.65435e13 −2.92043
759759 −6.73385e10 −0.00736505
760760 −2.64609e13 −2.87702
761761 −9.14307e11 −0.0988237 −0.0494119 0.998778i 0.515735π-0.515735\pi
−0.0494119 + 0.998778i 0.515735π0.515735\pi
762762 8.01598e11 0.0861310
763763 6.99263e10 0.00746931
764764 −1.44626e13 −1.53577
765765 2.52995e12 0.267077
766766 7.71312e12 0.809470
767767 −1.85220e11 −0.0193245
768768 1.83863e13 1.90708
769769 3.48454e12 0.359316 0.179658 0.983729i 0.442501π-0.442501\pi
0.179658 + 0.983729i 0.442501π0.442501\pi
770770 −6.06151e12 −0.621402
771771 1.63953e13 1.67099
772772 −3.01504e12 −0.305503
773773 −9.06972e12 −0.913663 −0.456832 0.889553i 0.651016π-0.651016\pi
−0.456832 + 0.889553i 0.651016π0.651016\pi
774774 −1.27527e12 −0.127723
775775 2.37054e12 0.236042
776776 9.43332e11 0.0933871
777777 2.14006e11 0.0210635
778778 −1.38328e11 −0.0135364
779779 7.90888e12 0.769479
780780 8.34988e12 0.807708
781781 −3.54682e12 −0.341122
782782 −3.54555e11 −0.0339042
783783 9.53195e12 0.906262
784784 −2.03233e12 −0.192120
785785 −1.46437e13 −1.37638
786786 −9.62744e12 −0.899724
787787 −2.91276e12 −0.270657 −0.135328 0.990801i 0.543209π-0.543209\pi
−0.135328 + 0.990801i 0.543209π0.543209\pi
788788 1.42977e12 0.132099
789789 −2.49232e12 −0.228959
790790 −4.16228e13 −3.80197
791791 −1.23258e11 −0.0111949
792792 −9.48112e11 −0.0856242
793793 −3.24457e12 −0.291358
794794 −2.23948e13 −1.99965
795795 −1.61575e13 −1.43457
796796 1.22025e13 1.07731
797797 1.37467e13 1.20680 0.603400 0.797439i 0.293812π-0.293812\pi
0.603400 + 0.797439i 0.293812π0.293812\pi
798798 2.29473e13 2.00317
799799 2.32414e12 0.201745
800800 6.74987e12 0.582627
801801 4.74809e11 0.0407542
802802 −2.15389e13 −1.83839
803803 1.70582e12 0.144781
804804 7.38935e12 0.623669
805805 3.32417e11 0.0278999
806806 9.88493e11 0.0825023
807807 1.62457e13 1.34837
808808 6.82479e12 0.563298
809809 2.09640e13 1.72070 0.860352 0.509700i 0.170244π-0.170244\pi
0.860352 + 0.509700i 0.170244π0.170244\pi
810810 3.61982e13 2.95464
811811 1.80143e13 1.46226 0.731130 0.682238i 0.238993π-0.238993\pi
0.731130 + 0.682238i 0.238993π0.238993\pi
812812 1.94420e13 1.56942
813813 −1.59206e13 −1.27806
814814 1.47978e11 0.0118137
815815 −2.06859e13 −1.64235
816816 −7.19180e12 −0.567848
817817 6.38679e12 0.501514
818818 4.02883e13 3.14622
819819 −5.54294e11 −0.0430489
820820 2.10732e13 1.62768
821821 −1.41619e13 −1.08787 −0.543934 0.839128i 0.683066π-0.683066\pi
−0.543934 + 0.839128i 0.683066π0.683066\pi
822822 1.43228e13 1.09422
823823 1.99084e13 1.51264 0.756321 0.654201i 0.226995π-0.226995\pi
0.756321 + 0.654201i 0.226995π0.226995\pi
824824 1.16891e13 0.883299
825825 −5.53128e12 −0.415703
826826 −1.35630e12 −0.101378
827827 −1.21535e12 −0.0903497 −0.0451749 0.998979i 0.514385π-0.514385\pi
−0.0451749 + 0.998979i 0.514385π0.514385\pi
828828 1.12873e11 0.00834551
829829 1.43806e13 1.05750 0.528752 0.848777i 0.322660π-0.322660\pi
0.528752 + 0.848777i 0.322660π0.322660\pi
830830 −3.20485e12 −0.234399
831831 −1.59196e13 −1.15805
832832 4.94195e12 0.357556
833833 −4.06505e12 −0.292525
834834 −2.42755e13 −1.73748
835835 3.22489e13 2.29576
836836 1.03078e13 0.729857
837837 2.30540e12 0.162361
838838 −1.22846e13 −0.860527
839839 1.95134e11 0.0135958 0.00679790 0.999977i 0.497836π-0.497836\pi
0.00679790 + 0.999977i 0.497836π0.497836\pi
840840 2.81657e13 1.95193
841841 9.88657e11 0.0681497
842842 3.58623e13 2.45886
843843 6.30335e12 0.429880
844844 3.03723e13 2.06033
845845 −2.07977e13 −1.40333
846846 −1.13895e12 −0.0764430
847847 −1.11801e13 −0.746396
848848 7.63234e12 0.506846
849849 −1.29907e12 −0.0858119
850850 −2.91237e13 −1.91364
851851 −8.11520e9 −0.000530416 0
852852 3.57772e13 2.32610
853853 −1.61260e13 −1.04293 −0.521467 0.853271i 0.674615π-0.674615\pi
−0.521467 + 0.853271i 0.674615π0.674615\pi
854854 −2.37588e13 −1.52849
855855 6.20918e12 0.397363
856856 1.51835e13 0.966584
857857 2.32841e13 1.47450 0.737252 0.675618i 0.236123π-0.236123\pi
0.737252 + 0.675618i 0.236123π0.236123\pi
858858 −2.30649e12 −0.145298
859859 −2.80294e13 −1.75649 −0.878244 0.478212i 0.841285π-0.841285\pi
−0.878244 + 0.478212i 0.841285π0.841285\pi
860860 1.70176e13 1.06085
861861 −8.41845e12 −0.522057
862862 −3.58420e13 −2.21110
863863 1.95516e13 1.19987 0.599933 0.800050i 0.295194π-0.295194\pi
0.599933 + 0.800050i 0.295194π0.295194\pi
864864 6.56438e12 0.400758
865865 3.16997e13 1.92523
866866 −2.92079e13 −1.76469
867867 3.83500e12 0.230505
868868 4.70223e12 0.281168
869869 7.46906e12 0.444301
870870 4.87328e13 2.88393
871871 1.37604e12 0.0810120
872872 −2.24674e11 −0.0131592
873873 −2.21358e11 −0.0128982
874874 −8.70173e11 −0.0504434
875875 5.88620e12 0.339468
876876 −1.72067e13 −0.987257
877877 −2.28721e13 −1.30560 −0.652798 0.757532i 0.726405π-0.726405\pi
−0.652798 + 0.757532i 0.726405π0.726405\pi
878878 1.02219e12 0.0580506
879879 −1.10124e13 −0.622201
880880 4.66240e12 0.262082
881881 −1.32499e13 −0.741007 −0.370504 0.928831i 0.620815π-0.620815\pi
−0.370504 + 0.928831i 0.620815π0.620815\pi
882882 1.99209e12 0.110841
883883 4.12981e12 0.228616 0.114308 0.993445i 0.463535π-0.463535\pi
0.114308 + 0.993445i 0.463535π0.463535\pi
884884 −7.88925e12 −0.434511
885885 −2.20851e12 −0.121019
886886 1.08969e12 0.0594089
887887 2.42722e13 1.31660 0.658298 0.752757i 0.271277π-0.271277\pi
0.658298 + 0.752757i 0.271277π0.271277\pi
888888 −6.87601e11 −0.0371089
889889 7.10088e11 0.0381289
890890 −9.75329e12 −0.521070
891891 −6.49565e12 −0.345281
892892 6.24788e13 3.30439
893893 5.70406e12 0.300160
894894 −3.53013e13 −1.84830
895895 5.85094e11 0.0304805
896896 2.89667e13 1.50146
897897 1.26490e11 0.00652363
898898 5.80965e13 2.98130
899899 3.74781e12 0.191364
900900 9.27153e12 0.471043
901901 1.52661e13 0.771734
902902 −5.82108e12 −0.292802
903903 −6.79829e12 −0.340255
904904 3.96029e11 0.0197228
905905 −2.11805e13 −1.04958
906906 6.25316e13 3.08335
907907 3.60325e12 0.176792 0.0883958 0.996085i 0.471826π-0.471826\pi
0.0883958 + 0.996085i 0.471826π0.471826\pi
908908 −5.61660e13 −2.74212
909909 −1.60147e12 −0.0778005
910910 1.13860e13 0.550410
911911 1.38844e12 0.0667872 0.0333936 0.999442i 0.489369π-0.489369\pi
0.0333936 + 0.999442i 0.489369π0.489369\pi
912912 −1.76506e13 −0.844856
913913 5.75100e11 0.0273920
914914 −2.27637e13 −1.07891
915915 −3.86873e13 −1.82462
916916 −3.15282e13 −1.47969
917917 −8.52838e12 −0.398295
918918 −2.83233e13 −1.31629
919919 1.30682e13 0.604361 0.302180 0.953251i 0.402285π-0.402285\pi
0.302180 + 0.953251i 0.402285π0.402285\pi
920920 −1.06806e12 −0.0491530
921921 −2.83320e13 −1.29751
922922 4.76398e13 2.17111
923923 6.66240e12 0.302150
924924 −1.09719e13 −0.495175
925925 −6.66594e11 −0.0299381
926926 −4.84848e13 −2.16699
927927 −2.74290e12 −0.121998
928928 1.06715e13 0.472346
929929 −2.19012e13 −0.964709 −0.482354 0.875976i 0.660218π-0.660218\pi
−0.482354 + 0.875976i 0.660218π0.660218\pi
930930 1.17865e13 0.516669
931931 −9.97673e12 −0.435226
932932 −1.29848e12 −0.0563720
933933 1.00336e12 0.0433502
934934 2.69793e13 1.16003
935935 9.32568e12 0.399051
936936 1.78095e12 0.0758421
937937 1.20196e13 0.509403 0.254701 0.967020i 0.418023π-0.418023\pi
0.254701 + 0.967020i 0.418023π0.418023\pi
938938 1.00762e13 0.424997
939939 −4.02550e13 −1.68976
940940 1.51985e13 0.634929
941941 2.50039e13 1.03957 0.519786 0.854297i 0.326012π-0.326012\pi
0.519786 + 0.854297i 0.326012π0.326012\pi
942942 −4.08028e13 −1.68834
943943 3.19232e11 0.0131463
944944 1.04324e12 0.0427573
945945 2.65549e13 1.08318
946946 −4.70079e12 −0.190836
947947 3.96314e13 1.60127 0.800636 0.599151i 0.204495π-0.204495\pi
0.800636 + 0.599151i 0.204495π0.204495\pi
948948 −7.53413e13 −3.02967
949949 −3.20423e12 −0.128241
950950 −7.14772e13 −2.84716
951951 2.04613e13 0.811185
952952 −2.66119e13 −1.05005
953953 −6.42157e12 −0.252187 −0.126094 0.992018i 0.540244π-0.540244\pi
−0.126094 + 0.992018i 0.540244π0.540244\pi
954954 −7.48120e12 −0.292418
955955 −3.21132e13 −1.24930
956956 −7.97685e13 −3.08866
957957 −8.74494e12 −0.337018
958958 −4.28878e13 −1.64509
959959 1.26877e13 0.484396
960960 5.89265e13 2.23918
961961 −2.55332e13 −0.965716
962962 −2.77964e11 −0.0104641
963963 −3.56289e12 −0.133501
964964 5.10857e12 0.190525
965965 −6.69468e12 −0.248518
966966 9.26238e11 0.0342236
967967 3.50542e13 1.28920 0.644600 0.764520i 0.277024π-0.277024\pi
0.644600 + 0.764520i 0.277024π0.277024\pi
968968 3.59216e13 1.31497
969969 −3.53046e13 −1.28639
970970 4.54703e12 0.164913
971971 −5.00924e13 −1.80836 −0.904181 0.427150i 0.859517π-0.859517\pi
−0.904181 + 0.427150i 0.859517π0.859517\pi
972972 2.02777e13 0.728652
973973 −2.15042e13 −0.769158
974974 −3.18183e13 −1.13282
975975 1.03900e13 0.368211
976976 1.82748e13 0.644656
977977 −3.04571e13 −1.06946 −0.534728 0.845024i 0.679586π-0.679586\pi
−0.534728 + 0.845024i 0.679586π0.679586\pi
978978 −5.76386e13 −2.01460
979979 1.75020e12 0.0608926
980980 −2.65830e13 −0.920634
981981 5.27209e10 0.00181749
982982 −5.90633e13 −2.02682
983983 −4.68733e13 −1.60116 −0.800579 0.599227i 0.795475π-0.795475\pi
−0.800579 + 0.599227i 0.795475π0.795475\pi
984984 2.70485e13 0.919741
985985 3.17470e12 0.107458
986986 −4.60444e13 −1.55142
987987 −6.07157e12 −0.203645
988988 −1.93623e13 −0.646474
989989 2.57795e11 0.00856822
990990 −4.57007e12 −0.151204
991991 −1.75561e13 −0.578224 −0.289112 0.957295i 0.593360π-0.593360\pi
−0.289112 + 0.957295i 0.593360π0.593360\pi
992992 2.58101e12 0.0846228
993993 −3.48773e13 −1.13834
994994 4.87863e13 1.58511
995995 2.70948e13 0.876358
996996 −5.80109e12 −0.186785
997997 2.86332e13 0.917787 0.458893 0.888491i 0.348246π-0.348246\pi
0.458893 + 0.888491i 0.348246π0.348246\pi
998998 −4.34310e13 −1.38584
999999 −6.48277e11 −0.0205928
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.b.1.8 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.b.1.8 76 1.1 even 1 trivial