Properties

Label 197.12.a.b.1.2
Level 197197
Weight 1212
Character 197.1
Self dual yes
Analytic conductor 151.364151.364
Analytic rank 00
Dimension 9292
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,12,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: N N == 197 197
Weight: k k == 12 12
Character orbit: [χ][\chi] == 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 151.363606570151.363606570
Analytic rank: 00
Dimension: 9292
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Character χ\chi == 197.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q87.1440q2+786.167q3+5546.07q4+12634.2q568509.7q652867.9q7304836.q8+440912.q91.10099e6q10243497.q11+4.36014e6q12+1.64401e6q13+4.60712e6q14+9.93256e6q15+1.52063e7q163.18554e6q173.84228e7q181.13223e6q19+7.00699e7q204.15630e7q21+2.12193e7q225.58534e7q232.39652e8q24+1.10794e8q251.43265e8q26+2.07363e8q272.93209e8q28+7.30013e7q298.65562e8q30+1.66906e8q317.00830e8q321.91429e8q33+2.77600e8q346.67941e8q35+2.44533e9q362.24431e8q37+9.86673e7q38+1.29246e9q393.85134e9q403.79319e8q41+3.62197e9q42+2.22500e8q431.35045e9q44+5.57055e9q45+4.86728e9q46+2.25481e9q47+1.19547e10q48+8.17688e8q499.65500e9q502.50437e9q51+9.11778e9q525.59241e7q531.80705e10q543.07638e9q55+1.61160e10q568.90124e8q576.36162e9q58+2.40144e9q59+5.50867e10q605.86229e9q611.45449e10q622.33101e10q63+2.99307e10q64+2.07706e10q65+1.66819e10q66+7.91950e9q671.76672e10q684.39101e10q69+5.82070e10q70+2.05210e10q711.34406e11q72+1.74831e10q73+1.95578e10q74+8.71024e10q756.27944e9q76+1.28732e10q771.12630e11q78+2.82858e10q79+1.92118e11q80+8.49161e10q81+3.30554e10q82+6.22953e10q832.30511e11q844.02466e10q851.93896e10q86+5.73912e10q87+7.42266e10q888.70641e10q894.85440e11q908.69152e10q913.09767e11q92+1.31216e11q931.96493e11q941.43048e10q955.50969e11q96+1.00198e11q977.12566e10q981.07361e11q99+O(q100)q-87.1440 q^{2} +786.167 q^{3} +5546.07 q^{4} +12634.2 q^{5} -68509.7 q^{6} -52867.9 q^{7} -304836. q^{8} +440912. q^{9} -1.10099e6 q^{10} -243497. q^{11} +4.36014e6 q^{12} +1.64401e6 q^{13} +4.60712e6 q^{14} +9.93256e6 q^{15} +1.52063e7 q^{16} -3.18554e6 q^{17} -3.84228e7 q^{18} -1.13223e6 q^{19} +7.00699e7 q^{20} -4.15630e7 q^{21} +2.12193e7 q^{22} -5.58534e7 q^{23} -2.39652e8 q^{24} +1.10794e8 q^{25} -1.43265e8 q^{26} +2.07363e8 q^{27} -2.93209e8 q^{28} +7.30013e7 q^{29} -8.65562e8 q^{30} +1.66906e8 q^{31} -7.00830e8 q^{32} -1.91429e8 q^{33} +2.77600e8 q^{34} -6.67941e8 q^{35} +2.44533e9 q^{36} -2.24431e8 q^{37} +9.86673e7 q^{38} +1.29246e9 q^{39} -3.85134e9 q^{40} -3.79319e8 q^{41} +3.62197e9 q^{42} +2.22500e8 q^{43} -1.35045e9 q^{44} +5.57055e9 q^{45} +4.86728e9 q^{46} +2.25481e9 q^{47} +1.19547e10 q^{48} +8.17688e8 q^{49} -9.65500e9 q^{50} -2.50437e9 q^{51} +9.11778e9 q^{52} -5.59241e7 q^{53} -1.80705e10 q^{54} -3.07638e9 q^{55} +1.61160e10 q^{56} -8.90124e8 q^{57} -6.36162e9 q^{58} +2.40144e9 q^{59} +5.50867e10 q^{60} -5.86229e9 q^{61} -1.45449e10 q^{62} -2.33101e10 q^{63} +2.99307e10 q^{64} +2.07706e10 q^{65} +1.66819e10 q^{66} +7.91950e9 q^{67} -1.76672e10 q^{68} -4.39101e10 q^{69} +5.82070e10 q^{70} +2.05210e10 q^{71} -1.34406e11 q^{72} +1.74831e10 q^{73} +1.95578e10 q^{74} +8.71024e10 q^{75} -6.27944e9 q^{76} +1.28732e10 q^{77} -1.12630e11 q^{78} +2.82858e10 q^{79} +1.92118e11 q^{80} +8.49161e10 q^{81} +3.30554e10 q^{82} +6.22953e10 q^{83} -2.30511e11 q^{84} -4.02466e10 q^{85} -1.93896e10 q^{86} +5.73912e10 q^{87} +7.42266e10 q^{88} -8.70641e10 q^{89} -4.85440e11 q^{90} -8.69152e10 q^{91} -3.09767e11 q^{92} +1.31216e11 q^{93} -1.96493e11 q^{94} -1.43048e10 q^{95} -5.50969e11 q^{96} +1.00198e11 q^{97} -7.12566e10 q^{98} -1.07361e11 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 92q+64q2+2420q3+98304q4+16604q5+46656q6+305891q7+234027q8+5900444q9+1074277q10+595928q11+4956160q12+7463810q13+4915769q14+6749159q15++9542377031q99+O(q100) 92 q + 64 q^{2} + 2420 q^{3} + 98304 q^{4} + 16604 q^{5} + 46656 q^{6} + 305891 q^{7} + 234027 q^{8} + 5900444 q^{9} + 1074277 q^{10} + 595928 q^{11} + 4956160 q^{12} + 7463810 q^{13} + 4915769 q^{14} + 6749159 q^{15}+ \cdots + 9542377031 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −87.1440 −1.92563 −0.962814 0.270165i 0.912922π-0.912922\pi
−0.962814 + 0.270165i 0.912922π0.912922\pi
33 786.167 1.86788 0.933938 0.357435i 0.116349π-0.116349\pi
0.933938 + 0.357435i 0.116349π0.116349\pi
44 5546.07 2.70804
55 12634.2 1.80805 0.904026 0.427477i 0.140597π-0.140597\pi
0.904026 + 0.427477i 0.140597π0.140597\pi
66 −68509.7 −3.59683
77 −52867.9 −1.18892 −0.594460 0.804125i 0.702634π-0.702634\pi
−0.594460 + 0.804125i 0.702634π0.702634\pi
88 −304836. −3.28906
99 440912. 2.48896
1010 −1.10099e6 −3.48164
1111 −243497. −0.455863 −0.227931 0.973677i 0.573196π-0.573196\pi
−0.227931 + 0.973677i 0.573196π0.573196\pi
1212 4.36014e6 5.05829
1313 1.64401e6 1.22805 0.614024 0.789288i 0.289550π-0.289550\pi
0.614024 + 0.789288i 0.289550π0.289550\pi
1414 4.60712e6 2.28942
1515 9.93256e6 3.37722
1616 1.52063e7 3.62545
1717 −3.18554e6 −0.544144 −0.272072 0.962277i 0.587709π-0.587709\pi
−0.272072 + 0.962277i 0.587709π0.587709\pi
1818 −3.84228e7 −4.79281
1919 −1.13223e6 −0.104904 −0.0524519 0.998623i 0.516704π-0.516704\pi
−0.0524519 + 0.998623i 0.516704π0.516704\pi
2020 7.00699e7 4.89628
2121 −4.15630e7 −2.22076
2222 2.12193e7 0.877822
2323 −5.58534e7 −1.80945 −0.904724 0.425998i 0.859923π-0.859923\pi
−0.904724 + 0.425998i 0.859923π0.859923\pi
2424 −2.39652e8 −6.14355
2525 1.10794e8 2.26905
2626 −1.43265e8 −2.36476
2727 2.07363e8 2.78119
2828 −2.93209e8 −3.21965
2929 7.30013e7 0.660909 0.330454 0.943822i 0.392798π-0.392798\pi
0.330454 + 0.943822i 0.392798π0.392798\pi
3030 −8.65562e8 −6.50327
3131 1.66906e8 1.04709 0.523544 0.851999i 0.324610π-0.324610\pi
0.523544 + 0.851999i 0.324610π0.324610\pi
3232 −7.00830e8 −3.69222
3333 −1.91429e8 −0.851495
3434 2.77600e8 1.04782
3535 −6.67941e8 −2.14963
3636 2.44533e9 6.74021
3737 −2.24431e8 −0.532075 −0.266037 0.963963i 0.585714π-0.585714\pi
−0.266037 + 0.963963i 0.585714π0.585714\pi
3838 9.86673e7 0.202006
3939 1.29246e9 2.29384
4040 −3.85134e9 −5.94679
4141 −3.79319e8 −0.511321 −0.255660 0.966767i 0.582293π-0.582293\pi
−0.255660 + 0.966767i 0.582293π0.582293\pi
4242 3.62197e9 4.27635
4343 2.22500e8 0.230810 0.115405 0.993319i 0.463183π-0.463183\pi
0.115405 + 0.993319i 0.463183π0.463183\pi
4444 −1.35045e9 −1.23450
4545 5.57055e9 4.50017
4646 4.86728e9 3.48432
4747 2.25481e9 1.43408 0.717038 0.697034i 0.245498π-0.245498\pi
0.717038 + 0.697034i 0.245498π0.245498\pi
4848 1.19547e10 6.77190
4949 8.17688e8 0.413532
5050 −9.65500e9 −4.36935
5151 −2.50437e9 −1.01639
5252 9.11778e9 3.32561
5353 −5.59241e7 −0.0183689 −0.00918443 0.999958i 0.502924π-0.502924\pi
−0.00918443 + 0.999958i 0.502924π0.502924\pi
5454 −1.80705e10 −5.35555
5555 −3.07638e9 −0.824223
5656 1.61160e10 3.91043
5757 −8.90124e8 −0.195947
5858 −6.36162e9 −1.27266
5959 2.40144e9 0.437307 0.218653 0.975803i 0.429834π-0.429834\pi
0.218653 + 0.975803i 0.429834π0.429834\pi
6060 5.50867e10 9.14565
6161 −5.86229e9 −0.888696 −0.444348 0.895854i 0.646565π-0.646565\pi
−0.444348 + 0.895854i 0.646565π0.646565\pi
6262 −1.45449e10 −2.01630
6363 −2.33101e10 −2.95918
6464 2.99307e10 3.48439
6565 2.07706e10 2.22037
6666 1.66819e10 1.63966
6767 7.91950e9 0.716616 0.358308 0.933603i 0.383354π-0.383354\pi
0.358308 + 0.933603i 0.383354π0.383354\pi
6868 −1.76672e10 −1.47357
6969 −4.39101e10 −3.37983
7070 5.82070e10 4.13939
7171 2.05210e10 1.34982 0.674911 0.737899i 0.264182π-0.264182\pi
0.674911 + 0.737899i 0.264182π0.264182\pi
7272 −1.34406e11 −8.18633
7373 1.74831e10 0.987060 0.493530 0.869729i 0.335706π-0.335706\pi
0.493530 + 0.869729i 0.335706π0.335706\pi
7474 1.95578e10 1.02458
7575 8.71024e10 4.23831
7676 −6.27944e9 −0.284084
7777 1.28732e10 0.541984
7878 −1.12630e11 −4.41708
7979 2.82858e10 1.03423 0.517117 0.855915i 0.327005π-0.327005\pi
0.517117 + 0.855915i 0.327005π0.327005\pi
8080 1.92118e11 6.55501
8181 8.49161e10 2.70597
8282 3.30554e10 0.984614
8383 6.22953e10 1.73590 0.867952 0.496649i 0.165436π-0.165436\pi
0.867952 + 0.496649i 0.165436π0.165436\pi
8484 −2.30511e11 −6.01390
8585 −4.02466e10 −0.983841
8686 −1.93896e10 −0.444453
8787 5.73912e10 1.23450
8888 7.42266e10 1.49936
8989 −8.70641e10 −1.65270 −0.826350 0.563156i 0.809587π-0.809587\pi
−0.826350 + 0.563156i 0.809587π0.809587\pi
9090 −4.85440e11 −8.66566
9191 −8.69152e10 −1.46005
9292 −3.09767e11 −4.90006
9393 1.31216e11 1.95583
9494 −1.96493e11 −2.76150
9595 −1.43048e10 −0.189671
9696 −5.50969e11 −6.89661
9797 1.00198e11 1.18471 0.592356 0.805676i 0.298198π-0.298198\pi
0.592356 + 0.805676i 0.298198π0.298198\pi
9898 −7.12566e10 −0.796309
9999 −1.07361e11 −1.13462
100100 6.14470e11 6.14470
101101 1.32458e11 1.25404 0.627021 0.779002i 0.284274π-0.284274\pi
0.627021 + 0.779002i 0.284274π0.284274\pi
102102 2.18240e11 1.95720
103103 1.10119e11 0.935959 0.467979 0.883739i 0.344982π-0.344982\pi
0.467979 + 0.883739i 0.344982π0.344982\pi
104104 −5.01152e11 −4.03912
105105 −5.25113e11 −4.01524
106106 4.87345e9 0.0353716
107107 7.80172e10 0.537749 0.268875 0.963175i 0.413348π-0.413348\pi
0.268875 + 0.963175i 0.413348π0.413348\pi
108108 1.15005e12 7.53160
109109 −3.81290e10 −0.237361 −0.118681 0.992932i 0.537866π-0.537866\pi
−0.118681 + 0.992932i 0.537866π0.537866\pi
110110 2.68088e11 1.58715
111111 −1.76440e11 −0.993850
112112 −8.03923e11 −4.31038
113113 2.06621e11 1.05498 0.527490 0.849561i 0.323133π-0.323133\pi
0.527490 + 0.849561i 0.323133π0.323133\pi
114114 7.75690e10 0.377321
115115 −7.05660e11 −3.27158
116116 4.04871e11 1.78977
117117 7.24862e11 3.05656
118118 −2.09271e11 −0.842090
119119 1.68413e11 0.646944
120120 −3.02780e12 −11.1079
121121 −2.26021e11 −0.792189
122122 5.10863e11 1.71130
123123 −2.98208e11 −0.955084
124124 9.25674e11 2.83556
125125 7.82882e11 2.29452
126126 2.03133e12 5.69827
127127 −5.46793e11 −1.46860 −0.734299 0.678826i 0.762489π-0.762489\pi
−0.734299 + 0.678826i 0.762489π0.762489\pi
128128 −1.17298e12 −3.01742
129129 1.74922e11 0.431124
130130 −1.81004e12 −4.27561
131131 −3.13074e11 −0.709014 −0.354507 0.935053i 0.615351π-0.615351\pi
−0.354507 + 0.935053i 0.615351π0.615351\pi
132132 −1.06168e12 −2.30588
133133 5.98588e10 0.124722
134134 −6.90137e11 −1.37994
135135 2.61986e12 5.02855
136136 9.71066e11 1.78972
137137 5.60447e11 0.992136 0.496068 0.868284i 0.334777π-0.334777\pi
0.496068 + 0.868284i 0.334777π0.334777\pi
138138 3.82650e12 6.50829
139139 3.59980e11 0.588432 0.294216 0.955739i 0.404941π-0.404941\pi
0.294216 + 0.955739i 0.404941π0.404941\pi
140140 −3.70445e12 −5.82129
141141 1.77266e12 2.67868
142142 −1.78828e12 −2.59926
143143 −4.00311e11 −0.559821
144144 6.70462e12 9.02361
145145 9.22310e11 1.19496
146146 −1.52355e12 −1.90071
147147 6.42840e11 0.772427
148148 −1.24471e12 −1.44088
149149 −1.32672e12 −1.47998 −0.739990 0.672618i 0.765170π-0.765170\pi
−0.739990 + 0.672618i 0.765170π0.765170\pi
150150 −7.59045e12 −8.16141
151151 1.54430e12 1.60088 0.800438 0.599416i 0.204600π-0.204600\pi
0.800438 + 0.599416i 0.204600π0.204600\pi
152152 3.45145e11 0.345034
153153 −1.40454e12 −1.35435
154154 −1.12182e12 −1.04366
155155 2.10872e12 1.89319
156156 7.16810e12 6.21182
157157 1.54023e12 1.28865 0.644327 0.764750i 0.277138π-0.277138\pi
0.644327 + 0.764750i 0.277138π0.277138\pi
158158 −2.46493e12 −1.99155
159159 −4.39657e10 −0.0343107
160160 −8.85439e12 −6.67573
161161 2.95285e12 2.15129
162162 −7.39993e12 −5.21068
163163 −2.89330e11 −0.196952 −0.0984762 0.995139i 0.531397π-0.531397\pi
−0.0984762 + 0.995139i 0.531397π0.531397\pi
164164 −2.10373e12 −1.38468
165165 −2.41855e12 −1.53955
166166 −5.42866e12 −3.34270
167167 −2.72326e11 −0.162237 −0.0811183 0.996704i 0.525849π-0.525849\pi
−0.0811183 + 0.996704i 0.525849π0.525849\pi
168168 1.26699e13 7.30419
169169 9.10598e11 0.508100
170170 3.50725e12 1.89451
171171 −4.99215e11 −0.261101
172172 1.23400e12 0.625042
173173 −8.95594e11 −0.439397 −0.219699 0.975568i 0.570507π-0.570507\pi
−0.219699 + 0.975568i 0.570507π0.570507\pi
174174 −5.00130e12 −2.37718
175175 −5.85743e12 −2.69773
176176 −3.70268e12 −1.65271
177177 1.88794e12 0.816835
178178 7.58711e12 3.18249
179179 −1.68681e12 −0.686081 −0.343041 0.939321i 0.611457π-0.611457\pi
−0.343041 + 0.939321i 0.611457π0.611457\pi
180180 3.08947e13 12.1867
181181 −1.70026e12 −0.650555 −0.325278 0.945619i 0.605458π-0.605458\pi
−0.325278 + 0.945619i 0.605458π0.605458\pi
182182 7.57413e12 2.81151
183183 −4.60874e12 −1.65997
184184 1.70261e13 5.95138
185185 −2.83549e12 −0.962019
186186 −1.14347e13 −3.76620
187187 7.75669e11 0.248055
188188 1.25053e13 3.88354
189189 −1.09629e13 −3.30662
190190 1.24658e12 0.365237
191191 2.77001e12 0.788493 0.394246 0.919005i 0.371006π-0.371006\pi
0.394246 + 0.919005i 0.371006π0.371006\pi
192192 2.35305e13 6.50841
193193 2.80210e11 0.0753214 0.0376607 0.999291i 0.488009π-0.488009\pi
0.0376607 + 0.999291i 0.488009π0.488009\pi
194194 −8.73162e12 −2.28132
195195 1.63292e13 4.14738
196196 4.53496e12 1.11986
197197 −2.96709e11 −0.0712470
198198 9.35584e12 2.18486
199199 2.56480e12 0.582588 0.291294 0.956634i 0.405914π-0.405914\pi
0.291294 + 0.956634i 0.405914π0.405914\pi
200200 −3.37739e13 −7.46304
201201 6.22606e12 1.33855
202202 −1.15430e13 −2.41482
203203 −3.85943e12 −0.785768
204204 −1.38894e13 −2.75244
205205 −4.79237e12 −0.924495
206206 −9.59619e12 −1.80231
207207 −2.46264e13 −4.50365
208208 2.49992e13 4.45223
209209 2.75695e11 0.0478217
210210 4.57605e13 7.73187
211211 −6.35815e11 −0.104659 −0.0523295 0.998630i 0.516665π-0.516665\pi
−0.0523295 + 0.998630i 0.516665π0.516665\pi
212212 −3.10159e11 −0.0497436
213213 1.61329e13 2.52130
214214 −6.79873e12 −1.03550
215215 2.81110e12 0.417316
216216 −6.32118e13 −9.14750
217217 −8.82398e12 −1.24490
218218 3.32272e12 0.457070
219219 1.37447e13 1.84371
220220 −1.70618e13 −2.23203
221221 −5.23705e12 −0.668235
222222 1.53757e13 1.91378
223223 8.89651e12 1.08030 0.540148 0.841570i 0.318368π-0.318368\pi
0.540148 + 0.841570i 0.318368π0.318368\pi
224224 3.70514e13 4.38976
225225 4.88503e13 5.64759
226226 −1.80058e13 −2.03150
227227 −7.22778e12 −0.795908 −0.397954 0.917405i 0.630280π-0.630280\pi
−0.397954 + 0.917405i 0.630280π0.630280\pi
228228 −4.93669e12 −0.530633
229229 −5.30547e12 −0.556709 −0.278355 0.960478i 0.589789π-0.589789\pi
−0.278355 + 0.960478i 0.589789π0.589789\pi
230230 6.14940e13 6.29984
231231 1.01205e13 1.01236
232232 −2.22534e13 −2.17377
233233 −9.75341e11 −0.0930462 −0.0465231 0.998917i 0.514814π-0.514814\pi
−0.0465231 + 0.998917i 0.514814π0.514814\pi
234234 −6.31674e13 −5.88580
235235 2.84876e13 2.59288
236236 1.33186e13 1.18425
237237 2.22373e13 1.93182
238238 −1.46762e13 −1.24577
239239 −1.61817e13 −1.34226 −0.671129 0.741341i 0.734190π-0.734190\pi
−0.671129 + 0.741341i 0.734190π0.734190\pi
240240 1.51037e14 12.2439
241241 3.10447e10 0.00245976 0.00122988 0.999999i 0.499609π-0.499609\pi
0.00122988 + 0.999999i 0.499609π0.499609\pi
242242 1.96964e13 1.52546
243243 3.00244e13 2.27321
244244 −3.25127e13 −2.40663
245245 1.03308e13 0.747688
246246 2.59871e13 1.83914
247247 −1.86140e12 −0.128827
248248 −5.08790e13 −3.44393
249249 4.89745e13 3.24245
250250 −6.82234e13 −4.41839
251251 −9.77956e12 −0.619604 −0.309802 0.950801i 0.600263π-0.600263\pi
−0.309802 + 0.950801i 0.600263π0.600263\pi
252252 −1.29279e14 −8.01358
253253 1.36001e13 0.824860
254254 4.76498e13 2.82797
255255 −3.16405e13 −1.83769
256256 4.09200e13 2.32603
257257 −3.13864e13 −1.74626 −0.873132 0.487484i 0.837915π-0.837915\pi
−0.873132 + 0.487484i 0.837915π0.837915\pi
258258 −1.52434e13 −0.830184
259259 1.18652e13 0.632595
260260 1.15195e14 6.01287
261261 3.21872e13 1.64498
262262 2.72825e13 1.36530
263263 1.19615e13 0.586177 0.293089 0.956085i 0.405317π-0.405317\pi
0.293089 + 0.956085i 0.405317π0.405317\pi
264264 5.83546e13 2.80061
265265 −7.06554e11 −0.0332119
266266 −5.21633e12 −0.240169
267267 −6.84470e13 −3.08704
268268 4.39221e13 1.94063
269269 −2.88848e13 −1.25035 −0.625175 0.780485i 0.714972π-0.714972\pi
−0.625175 + 0.780485i 0.714972π0.714972\pi
270270 −2.28305e14 −9.68311
271271 −1.75361e13 −0.728790 −0.364395 0.931245i 0.618724π-0.618724\pi
−0.364395 + 0.931245i 0.618724π0.618724\pi
272272 −4.84401e13 −1.97277
273273 −6.83299e13 −2.72719
274274 −4.88396e13 −1.91049
275275 −2.69779e13 −1.03438
276276 −2.43528e14 −9.15271
277277 −4.89346e13 −1.80292 −0.901462 0.432859i 0.857505π-0.857505\pi
−0.901462 + 0.432859i 0.857505π0.857505\pi
278278 −3.13701e13 −1.13310
279279 7.35909e13 2.60616
280280 2.03612e14 7.07026
281281 −6.93651e12 −0.236187 −0.118094 0.993002i 0.537678π-0.537678\pi
−0.118094 + 0.993002i 0.537678π0.537678\pi
282282 −1.54477e14 −5.15813
283283 5.95228e13 1.94921 0.974604 0.223935i 0.0718905π-0.0718905\pi
0.974604 + 0.223935i 0.0718905π0.0718905\pi
284284 1.13811e14 3.65538
285285 −1.12460e13 −0.354283
286286 3.48847e13 1.07801
287287 2.00538e13 0.607920
288288 −3.09004e14 −9.18979
289289 −2.41242e13 −0.703907
290290 −8.03737e13 −2.30104
291291 7.87721e13 2.21290
292292 9.69627e13 2.67300
293293 4.44871e12 0.120355 0.0601773 0.998188i 0.480833π-0.480833\pi
0.0601773 + 0.998188i 0.480833π0.480833\pi
294294 −5.60196e13 −1.48741
295295 3.03402e13 0.790673
296296 6.84145e13 1.75002
297297 −5.04924e13 −1.26784
298298 1.15616e14 2.84989
299299 −9.18233e13 −2.22209
300300 4.83076e14 11.4775
301301 −1.17631e13 −0.274414
302302 −1.34576e14 −3.08269
303303 1.04134e14 2.34239
304304 −1.72170e13 −0.380324
305305 −7.40651e13 −1.60681
306306 1.22397e14 2.60798
307307 4.35234e13 0.910881 0.455441 0.890266i 0.349482π-0.349482\pi
0.455441 + 0.890266i 0.349482π0.349482\pi
308308 7.13956e13 1.46772
309309 8.65718e13 1.74825
310310 −1.83762e14 −3.64558
311311 5.89792e12 0.114952 0.0574761 0.998347i 0.481695π-0.481695\pi
0.0574761 + 0.998347i 0.481695π0.481695\pi
312312 −3.93990e14 −7.54457
313313 3.03098e13 0.570281 0.285141 0.958486i 0.407960π-0.407960\pi
0.285141 + 0.958486i 0.407960π0.407960\pi
314314 −1.34221e14 −2.48147
315315 −2.94503e14 −5.35035
316316 1.56875e14 2.80075
317317 −8.45658e12 −0.148378 −0.0741889 0.997244i 0.523637π-0.523637\pi
−0.0741889 + 0.997244i 0.523637π0.523637\pi
318318 3.83135e12 0.0660697
319319 −1.77756e13 −0.301284
320320 3.78149e14 6.29996
321321 6.13346e13 1.00445
322322 −2.57323e14 −4.14259
323323 3.60677e12 0.0570827
324324 4.70951e14 7.32787
325325 1.82146e14 2.78651
326326 2.52133e13 0.379257
327327 −2.99758e13 −0.443362
328328 1.15630e14 1.68176
329329 −1.19207e14 −1.70500
330330 2.10762e14 2.96460
331331 −1.08434e14 −1.50007 −0.750037 0.661396i 0.769964π-0.769964\pi
−0.750037 + 0.661396i 0.769964π0.769964\pi
332332 3.45494e14 4.70090
333333 −9.89541e13 −1.32431
334334 2.37316e13 0.312408
335335 1.00056e14 1.29568
336336 −6.32018e14 −8.05125
337337 1.08104e14 1.35480 0.677401 0.735613i 0.263106π-0.263106\pi
0.677401 + 0.735613i 0.263106π0.263106\pi
338338 −7.93531e13 −0.978412
339339 1.62439e14 1.97057
340340 −2.23210e14 −2.66428
341341 −4.06412e13 −0.477328
342342 4.35036e13 0.502784
343343 6.13077e13 0.697264
344344 −6.78261e13 −0.759146
345345 −5.54767e14 −6.11090
346346 7.80456e13 0.846116
347347 −6.13520e13 −0.654661 −0.327331 0.944910i 0.606149π-0.606149\pi
−0.327331 + 0.944910i 0.606149π0.606149\pi
348348 3.18296e14 3.34307
349349 −6.29685e13 −0.651004 −0.325502 0.945541i 0.605533π-0.605533\pi
−0.325502 + 0.945541i 0.605533π0.605533\pi
350350 5.10440e14 5.19482
351351 3.40907e14 3.41544
352352 1.70650e14 1.68314
353353 3.83303e13 0.372204 0.186102 0.982530i 0.440415π-0.440415\pi
0.186102 + 0.982530i 0.440415π0.440415\pi
354354 −1.64522e14 −1.57292
355355 2.59265e14 2.44055
356356 −4.82864e14 −4.47558
357357 1.32401e14 1.20841
358358 1.46996e14 1.32114
359359 1.77156e14 1.56796 0.783982 0.620784i 0.213186π-0.213186\pi
0.783982 + 0.620784i 0.213186π0.213186\pi
360360 −1.69810e15 −14.8013
361361 −1.15208e14 −0.988995
362362 1.48168e14 1.25273
363363 −1.77690e14 −1.47971
364364 −4.82038e14 −3.95388
365365 2.20884e14 1.78466
366366 4.01624e14 3.19649
367367 −5.67164e13 −0.444677 −0.222339 0.974969i 0.571369π-0.571369\pi
−0.222339 + 0.974969i 0.571369π0.571369\pi
368368 −8.49321e14 −6.56007
369369 −1.67246e14 −1.27266
370370 2.47096e14 1.85249
371371 2.95659e12 0.0218391
372372 7.27734e14 5.29647
373373 1.04076e14 0.746363 0.373182 0.927758i 0.378267π-0.378267\pi
0.373182 + 0.927758i 0.378267π0.378267\pi
374374 −6.75949e13 −0.477661
375375 6.15476e14 4.28587
376376 −6.87347e14 −4.71675
377377 1.20015e14 0.811628
378378 9.55348e14 6.36732
379379 −9.10659e12 −0.0598191 −0.0299096 0.999553i 0.509522π-0.509522\pi
−0.0299096 + 0.999553i 0.509522π0.509522\pi
380380 −7.93354e13 −0.513638
381381 −4.29871e14 −2.74316
382382 −2.41390e14 −1.51834
383383 4.60884e13 0.285758 0.142879 0.989740i 0.454364π-0.454364\pi
0.142879 + 0.989740i 0.454364π0.454364\pi
384384 −9.22157e14 −5.63616
385385 1.62642e14 0.979936
386386 −2.44186e13 −0.145041
387387 9.81030e13 0.574476
388388 5.55703e14 3.20825
389389 −2.14867e14 −1.22306 −0.611530 0.791221i 0.709446π-0.709446\pi
−0.611530 + 0.791221i 0.709446π0.709446\pi
390390 −1.42299e15 −7.98632
391391 1.77923e14 0.984600
392392 −2.49261e14 −1.36013
393393 −2.46129e14 −1.32435
394394 2.58564e13 0.137195
395395 3.57366e14 1.86995
396396 −5.95431e14 −3.07261
397397 −1.39664e14 −0.710783 −0.355392 0.934717i 0.615653π-0.615653\pi
−0.355392 + 0.934717i 0.615653π0.615653\pi
398398 −2.23507e14 −1.12185
399399 4.70590e13 0.232966
400400 1.68476e15 8.22635
401401 −3.58063e14 −1.72451 −0.862255 0.506474i 0.830949π-0.830949\pi
−0.862255 + 0.506474i 0.830949π0.830949\pi
402402 −5.42563e14 −2.57755
403403 2.74395e14 1.28587
404404 7.34624e14 3.39600
405405 1.07284e15 4.89253
406406 3.36326e14 1.51310
407407 5.46482e13 0.242553
408408 7.63421e14 3.34297
409409 1.52082e14 0.657050 0.328525 0.944495i 0.393449π-0.393449\pi
0.328525 + 0.944495i 0.393449π0.393449\pi
410410 4.17627e14 1.78023
411411 4.40605e14 1.85319
412412 6.10727e14 2.53462
413413 −1.26959e14 −0.519923
414414 2.14604e15 8.67235
415415 7.87048e14 3.13860
416416 −1.15217e15 −4.53422
417417 2.83004e14 1.09912
418418 −2.40252e13 −0.0920868
419419 −2.33547e14 −0.883480 −0.441740 0.897143i 0.645639π-0.645639\pi
−0.441740 + 0.897143i 0.645639π0.645639\pi
420420 −2.91232e15 −10.8735
421421 8.00503e13 0.294993 0.147496 0.989063i 0.452879π-0.452879\pi
0.147496 + 0.989063i 0.452879π0.452879\pi
422422 5.54074e13 0.201534
423423 9.94173e14 3.56936
424424 1.70477e13 0.0604162
425425 −3.52937e14 −1.23469
426426 −1.40589e15 −4.85509
427427 3.09927e14 1.05659
428428 4.32689e14 1.45625
429429 −3.14711e14 −1.04568
430430 −2.44971e14 −0.803595
431431 3.50083e14 1.13383 0.566913 0.823777i 0.308137π-0.308137\pi
0.566913 + 0.823777i 0.308137π0.308137\pi
432432 3.15322e15 10.0831
433433 −1.57619e14 −0.497651 −0.248826 0.968548i 0.580045π-0.580045\pi
−0.248826 + 0.968548i 0.580045π0.580045\pi
434434 7.68957e14 2.39722
435435 7.25090e14 2.23203
436436 −2.11466e14 −0.642785
437437 6.32390e13 0.189818
438438 −1.19776e15 −3.55029
439439 −5.00298e14 −1.46445 −0.732225 0.681063i 0.761518π-0.761518\pi
−0.732225 + 0.681063i 0.761518π0.761518\pi
440440 9.37791e14 2.71092
441441 3.60529e14 1.02927
442442 4.56377e14 1.28677
443443 2.78354e14 0.775133 0.387567 0.921842i 0.373316π-0.373316\pi
0.387567 + 0.921842i 0.373316π0.373316\pi
444444 −9.78549e14 −2.69139
445445 −1.09998e15 −2.98817
446446 −7.75277e14 −2.08025
447447 −1.04303e15 −2.76442
448448 −1.58237e15 −4.14266
449449 −4.73886e14 −1.22552 −0.612758 0.790270i 0.709940π-0.709940\pi
−0.612758 + 0.790270i 0.709940π0.709940\pi
450450 −4.25701e15 −10.8752
451451 9.23631e13 0.233092
452452 1.14594e15 2.85693
453453 1.21408e15 2.99024
454454 6.29857e14 1.53262
455455 −1.09810e15 −2.63985
456456 2.71342e14 0.644481
457457 −4.20915e14 −0.987769 −0.493884 0.869528i 0.664423π-0.664423\pi
−0.493884 + 0.869528i 0.664423π0.664423\pi
458458 4.62339e14 1.07201
459459 −6.60564e14 −1.51337
460460 −3.91364e15 −8.85957
461461 5.26897e14 1.17861 0.589306 0.807910i 0.299401π-0.299401\pi
0.589306 + 0.807910i 0.299401π0.299401\pi
462462 −8.81938e14 −1.94943
463463 4.35851e14 0.952012 0.476006 0.879442i 0.342084π-0.342084\pi
0.476006 + 0.879442i 0.342084π0.342084\pi
464464 1.11008e15 2.39610
465465 1.65781e15 3.53624
466466 8.49951e13 0.179172
467467 3.98633e14 0.830483 0.415241 0.909711i 0.363697π-0.363697\pi
0.415241 + 0.909711i 0.363697π0.363697\pi
468468 4.02014e15 8.27730
469469 −4.18688e14 −0.852000
470470 −2.48253e15 −4.99293
471471 1.21088e15 2.40705
472472 −7.32046e14 −1.43833
473473 −5.41781e13 −0.105217
474474 −1.93785e15 −3.71997
475475 −1.25444e14 −0.238032
476476 9.34029e14 1.75195
477477 −2.46576e13 −0.0457194
478478 1.41014e15 2.58469
479479 1.15602e14 0.209468 0.104734 0.994500i 0.466601π-0.466601\pi
0.104734 + 0.994500i 0.466601π0.466601\pi
480480 −6.96103e15 −12.4694
481481 −3.68965e14 −0.653413
482482 −2.70536e12 −0.00473659
483483 2.32143e15 4.01834
484484 −1.25353e15 −2.14528
485485 1.26591e15 2.14202
486486 −2.61645e15 −4.37737
487487 4.03307e14 0.667155 0.333577 0.942723i 0.391744π-0.391744\pi
0.333577 + 0.942723i 0.391744π0.391744\pi
488488 1.78704e15 2.92297
489489 −2.27461e14 −0.367883
490490 −9.00267e14 −1.43977
491491 4.64426e14 0.734461 0.367230 0.930130i 0.380306π-0.380306\pi
0.367230 + 0.930130i 0.380306π0.380306\pi
492492 −1.65388e15 −2.58641
493493 −2.32548e14 −0.359630
494494 1.62210e14 0.248072
495495 −1.35641e15 −2.05146
496496 2.53802e15 3.79617
497497 −1.08490e15 −1.60483
498498 −4.26783e15 −6.24376
499499 3.73382e14 0.540257 0.270128 0.962824i 0.412934π-0.412934\pi
0.270128 + 0.962824i 0.412934π0.412934\pi
500500 4.34192e15 6.21365
501501 −2.14094e14 −0.303038
502502 8.52230e14 1.19313
503503 −9.19697e14 −1.27356 −0.636782 0.771044i 0.719735π-0.719735\pi
−0.636782 + 0.771044i 0.719735π0.719735\pi
504504 7.10575e15 9.73290
505505 1.67350e15 2.26737
506506 −1.18517e15 −1.58837
507507 7.15882e14 0.949069
508508 −3.03256e15 −3.97703
509509 −5.01368e14 −0.650442 −0.325221 0.945638i 0.605439π-0.605439\pi
−0.325221 + 0.945638i 0.605439π0.605439\pi
510510 2.75728e15 3.53871
511511 −9.24296e14 −1.17354
512512 −1.16367e15 −1.46166
513513 −2.34784e14 −0.291758
514514 2.73514e15 3.36266
515515 1.39126e15 1.69226
516516 9.70132e14 1.16750
517517 −5.49040e14 −0.653741
518518 −1.03398e15 −1.21814
519519 −7.04086e14 −0.820740
520520 −6.33163e15 −7.30293
521521 −8.34015e14 −0.951845 −0.475922 0.879487i 0.657886π-0.657886\pi
−0.475922 + 0.879487i 0.657886π0.657886\pi
522522 −2.80492e15 −3.16761
523523 −7.13094e14 −0.796870 −0.398435 0.917197i 0.630447π-0.630447\pi
−0.398435 + 0.917197i 0.630447π0.630447\pi
524524 −1.73633e15 −1.92004
525525 −4.60492e15 −5.03902
526526 −1.04237e15 −1.12876
527527 −5.31686e14 −0.569766
528528 −2.91092e15 −3.08706
529529 2.16679e15 2.27410
530530 6.15719e13 0.0639537
531531 1.05882e15 1.08844
532532 3.31981e14 0.337753
533533 −6.23603e14 −0.627926
534534 5.96474e15 5.94449
535535 9.85681e14 0.972279
536536 −2.41415e15 −2.35699
537537 −1.32612e15 −1.28152
538538 2.51713e15 2.40771
539539 −1.99105e14 −0.188514
540540 1.45299e16 13.6175
541541 −1.58429e15 −1.46977 −0.734885 0.678192i 0.762764π-0.762764\pi
−0.734885 + 0.678192i 0.762764π0.762764\pi
542542 1.52817e15 1.40338
543543 −1.33669e15 −1.21516
544544 2.23252e15 2.00910
545545 −4.81728e14 −0.429162
546546 5.95454e15 5.25156
547547 −2.40211e14 −0.209731 −0.104866 0.994486i 0.533441π-0.533441\pi
−0.104866 + 0.994486i 0.533441π0.533441\pi
548548 3.10828e15 2.68675
549549 −2.58475e15 −2.21193
550550 2.35096e15 1.99182
551551 −8.26545e13 −0.0693318
552552 1.33854e16 11.1164
553553 −1.49541e15 −1.22962
554554 4.26435e15 3.47176
555555 −2.22917e15 −1.79693
556556 1.99647e15 1.59350
557557 4.00785e14 0.316744 0.158372 0.987380i 0.449375π-0.449375\pi
0.158372 + 0.987380i 0.449375π0.449375\pi
558558 −6.41301e15 −5.01850
559559 3.65792e14 0.283445
560560 −1.01569e16 −7.79339
561561 6.09806e14 0.463336
562562 6.04475e14 0.454809
563563 −1.30980e15 −0.975906 −0.487953 0.872870i 0.662256π-0.662256\pi
−0.487953 + 0.872870i 0.662256π0.662256\pi
564564 9.83129e15 7.25397
565565 2.61049e15 1.90746
566566 −5.18706e15 −3.75345
567567 −4.48934e15 −3.21718
568568 −6.25552e15 −4.43964
569569 −9.61821e14 −0.676047 −0.338024 0.941138i 0.609758π-0.609758\pi
−0.338024 + 0.941138i 0.609758π0.609758\pi
570570 9.80018e14 0.682217
571571 2.05240e15 1.41503 0.707513 0.706700i 0.249817π-0.249817\pi
0.707513 + 0.706700i 0.249817π0.249817\pi
572572 −2.22015e15 −1.51602
573573 2.17769e15 1.47281
574574 −1.74757e15 −1.17063
575575 −6.18820e15 −4.10574
576576 1.31968e16 8.67251
577577 5.64715e14 0.367589 0.183794 0.982965i 0.441162π-0.441162\pi
0.183794 + 0.982965i 0.441162π0.441162\pi
578578 2.10228e15 1.35546
579579 2.20292e14 0.140691
580580 5.11520e15 3.23600
581581 −3.29342e15 −2.06385
582582 −6.86451e15 −4.26121
583583 1.36174e13 0.00837367
584584 −5.32949e15 −3.24649
585585 9.15802e15 5.52643
586586 −3.87679e14 −0.231758
587587 4.21382e14 0.249555 0.124778 0.992185i 0.460178π-0.460178\pi
0.124778 + 0.992185i 0.460178π0.460178\pi
588588 3.56524e15 2.09177
589589 −1.88977e14 −0.109843
590590 −2.64396e15 −1.52254
591591 −2.33263e14 −0.133081
592592 −3.41275e15 −1.92901
593593 −4.78325e14 −0.267869 −0.133934 0.990990i 0.542761π-0.542761\pi
−0.133934 + 0.990990i 0.542761π0.542761\pi
594594 4.40011e15 2.44139
595595 2.12775e15 1.16971
596596 −7.35810e15 −4.00785
597597 2.01636e15 1.08820
598598 8.00185e15 4.27892
599599 −5.93499e14 −0.314465 −0.157232 0.987562i 0.550257π-0.550257\pi
−0.157232 + 0.987562i 0.550257π0.550257\pi
600600 −2.65519e16 −13.9400
601601 3.22160e15 1.67596 0.837978 0.545704i 0.183738π-0.183738\pi
0.837978 + 0.545704i 0.183738π0.183738\pi
602602 1.02509e15 0.528420
603603 3.49180e15 1.78363
604604 8.56478e15 4.33524
605605 −2.85558e15 −1.43232
606606 −9.07469e15 −4.51058
607607 −3.13500e15 −1.54419 −0.772093 0.635509i 0.780790π-0.780790\pi
−0.772093 + 0.635509i 0.780790π0.780790\pi
608608 7.93502e14 0.387328
609609 −3.03415e15 −1.46772
610610 6.45432e15 3.09412
611611 3.70692e15 1.76111
612612 −7.78969e15 −3.66765
613613 1.54585e15 0.721332 0.360666 0.932695i 0.382549π-0.382549\pi
0.360666 + 0.932695i 0.382549π0.382549\pi
614614 −3.79280e15 −1.75402
615615 −3.76761e15 −1.72684
616616 −3.92421e15 −1.78262
617617 −1.75213e15 −0.788855 −0.394428 0.918927i 0.629057π-0.629057\pi
−0.394428 + 0.918927i 0.629057π0.629057\pi
618618 −7.54421e15 −3.36649
619619 4.13897e15 1.83060 0.915300 0.402773i 0.131954π-0.131954\pi
0.915300 + 0.402773i 0.131954π0.131954\pi
620620 1.16951e16 5.12684
621621 −1.15819e16 −5.03243
622622 −5.13969e14 −0.221355
623623 4.60290e15 1.96493
624624 1.96535e16 8.31621
625625 4.48120e15 1.87955
626626 −2.64131e15 −1.09815
627627 2.16743e14 0.0893250
628628 8.54220e15 3.48973
629629 7.14932e14 0.289525
630630 2.56642e16 10.3028
631631 1.34196e15 0.534046 0.267023 0.963690i 0.413960π-0.413960\pi
0.267023 + 0.963690i 0.413960π0.413960\pi
632632 −8.62251e15 −3.40165
633633 −4.99857e14 −0.195490
634634 7.36940e14 0.285721
635635 −6.90827e15 −2.65530
636636 −2.43837e14 −0.0929150
637637 1.34428e15 0.507837
638638 1.54904e15 0.580160
639639 9.04794e15 3.35966
640640 −1.48196e16 −5.45565
641641 2.56166e15 0.934978 0.467489 0.883999i 0.345159π-0.345159\pi
0.467489 + 0.883999i 0.345159π0.345159\pi
642642 −5.34494e15 −1.93419
643643 1.86299e15 0.668420 0.334210 0.942499i 0.391531π-0.391531\pi
0.334210 + 0.942499i 0.391531π0.391531\pi
644644 1.63767e16 5.82579
645645 2.21000e15 0.779495
646646 −3.14308e14 −0.109920
647647 −2.31615e15 −0.803144 −0.401572 0.915827i 0.631536π-0.631536\pi
−0.401572 + 0.915827i 0.631536π0.631536\pi
648648 −2.58855e16 −8.90007
649649 −5.84744e14 −0.199352
650650 −1.58729e16 −5.36577
651651 −6.93712e15 −2.32533
652652 −1.60464e15 −0.533355
653653 3.45678e15 1.13933 0.569665 0.821877i 0.307073π-0.307073\pi
0.569665 + 0.821877i 0.307073π0.307073\pi
654654 2.61221e15 0.853749
655655 −3.95542e15 −1.28193
656656 −5.76802e15 −1.85377
657657 7.70852e15 2.45675
658658 1.03882e16 3.28320
659659 −1.88198e15 −0.589856 −0.294928 0.955519i 0.595296π-0.595296\pi
−0.294928 + 0.955519i 0.595296π0.595296\pi
660660 −1.34134e16 −4.16916
661661 1.30744e15 0.403007 0.201504 0.979488i 0.435417π-0.435417\pi
0.201504 + 0.979488i 0.435417π0.435417\pi
662662 9.44940e15 2.88858
663663 −4.11719e15 −1.24818
664664 −1.89898e16 −5.70948
665665 7.56265e14 0.225504
666666 8.62326e15 2.55013
667667 −4.07737e15 −1.19588
668668 −1.51034e15 −0.439344
669669 6.99415e15 2.01786
670670 −8.71930e15 −2.49500
671671 1.42745e15 0.405123
672672 2.91286e16 8.19952
673673 −4.80307e15 −1.34102 −0.670512 0.741899i 0.733925π-0.733925\pi
−0.670512 + 0.741899i 0.733925π0.733925\pi
674674 −9.42059e15 −2.60885
675675 2.29746e16 6.31068
676676 5.05024e15 1.37596
677677 −6.54600e15 −1.76904 −0.884521 0.466500i 0.845515π-0.845515\pi
−0.884521 + 0.466500i 0.845515π0.845515\pi
678678 −1.41556e16 −3.79459
679679 −5.29724e15 −1.40853
680680 1.22686e16 3.23591
681681 −5.68224e15 −1.48666
682682 3.54163e15 0.919156
683683 −3.91112e15 −1.00690 −0.503451 0.864024i 0.667937π-0.667937\pi
−0.503451 + 0.864024i 0.667937π0.667937\pi
684684 −2.76868e15 −0.707073
685685 7.08077e15 1.79383
686686 −5.34259e15 −1.34267
687687 −4.17098e15 −1.03986
688688 3.38340e15 0.836790
689689 −9.19397e13 −0.0225578
690690 4.83446e16 11.7673
691691 6.39806e14 0.154497 0.0772483 0.997012i 0.475387π-0.475387\pi
0.0772483 + 0.997012i 0.475387π0.475387\pi
692692 −4.96703e15 −1.18991
693693 5.67594e15 1.34898
694694 5.34646e15 1.26063
695695 4.54804e15 1.06392
696696 −1.74949e16 −4.06033
697697 1.20834e15 0.278232
698698 5.48733e15 1.25359
699699 −7.66781e14 −0.173799
700700 −3.24857e16 −7.30556
701701 −6.15819e15 −1.37405 −0.687027 0.726631i 0.741085π-0.741085\pi
−0.687027 + 0.726631i 0.741085π0.741085\pi
702702 −2.97080e16 −6.57687
703703 2.54108e14 0.0558166
704704 −7.28803e15 −1.58840
705705 2.23960e16 4.84319
706706 −3.34025e15 −0.716726
707707 −7.00280e15 −1.49096
708708 1.04706e16 2.21202
709709 4.62591e15 0.969713 0.484857 0.874594i 0.338872π-0.338872\pi
0.484857 + 0.874594i 0.338872π0.338872\pi
710710 −2.25934e16 −4.69959
711711 1.24715e16 2.57417
712712 2.65403e16 5.43582
713713 −9.32227e15 −1.89465
714714 −1.15379e16 −2.32695
715715 −5.05759e15 −1.01219
716716 −9.35520e15 −1.85794
717717 −1.27215e16 −2.50717
718718 −1.54381e16 −3.01931
719719 −2.95761e14 −0.0574027 −0.0287013 0.999588i 0.509137π-0.509137\pi
−0.0287013 + 0.999588i 0.509137π0.509137\pi
720720 8.47072e16 16.3152
721721 −5.82175e15 −1.11278
722722 1.00397e16 1.90444
723723 2.44063e13 0.00459453
724724 −9.42978e15 −1.76173
725725 8.08808e15 1.49964
726726 1.54846e16 2.84937
727727 −6.30502e15 −1.15146 −0.575728 0.817642i 0.695281π-0.695281\pi
−0.575728 + 0.817642i 0.695281π0.695281\pi
728728 2.64949e16 4.80219
729729 8.56161e15 1.54012
730730 −1.92488e16 −3.43658
731731 −7.08783e14 −0.125594
732732 −2.55604e16 −4.49528
733733 5.25600e15 0.917452 0.458726 0.888578i 0.348306π-0.348306\pi
0.458726 + 0.888578i 0.348306π0.348306\pi
734734 4.94249e15 0.856283
735735 8.12174e15 1.39659
736736 3.91437e16 6.68088
737737 −1.92838e15 −0.326678
738738 1.45745e16 2.45067
739739 −9.12100e15 −1.52229 −0.761146 0.648580i 0.775363π-0.775363\pi
−0.761146 + 0.648580i 0.775363π0.775363\pi
740740 −1.57258e16 −2.60519
741741 −1.46337e15 −0.240632
742742 −2.57649e14 −0.0420540
743743 −2.18359e15 −0.353780 −0.176890 0.984231i 0.556604π-0.556604\pi
−0.176890 + 0.984231i 0.556604π0.556604\pi
744744 −3.99994e16 −6.43283
745745 −1.67620e16 −2.67588
746746 −9.06956e15 −1.43722
747747 2.74667e16 4.32060
748748 4.30192e15 0.671743
749749 −4.12461e15 −0.639341
750750 −5.36350e16 −8.25300
751751 1.00530e16 1.53560 0.767798 0.640692i 0.221353π-0.221353\pi
0.767798 + 0.640692i 0.221353π0.221353\pi
752752 3.42872e16 5.19917
753753 −7.68837e15 −1.15734
754754 −1.04586e16 −1.56289
755755 1.95109e16 2.89447
756756 −6.08009e16 −8.95447
757757 4.05739e15 0.593225 0.296613 0.954998i 0.404143π-0.404143\pi
0.296613 + 0.954998i 0.404143π0.404143\pi
758758 7.93584e14 0.115189
759759 1.06920e16 1.54074
760760 4.36062e15 0.623840
761761 −2.25831e15 −0.320751 −0.160375 0.987056i 0.551270π-0.551270\pi
−0.160375 + 0.987056i 0.551270π0.551270\pi
762762 3.74607e16 5.28230
763763 2.01580e15 0.282204
764764 1.53627e16 2.13527
765765 −1.77452e16 −2.44874
766766 −4.01633e15 −0.550264
767767 3.94799e15 0.537033
768768 3.21699e16 4.34474
769769 −3.92462e15 −0.526263 −0.263131 0.964760i 0.584755π-0.584755\pi
−0.263131 + 0.964760i 0.584755π0.584755\pi
770770 −1.41732e16 −1.88699
771771 −2.46750e16 −3.26181
772772 1.55406e15 0.203974
773773 −5.34422e15 −0.696462 −0.348231 0.937409i 0.613218π-0.613218\pi
−0.348231 + 0.937409i 0.613218π0.613218\pi
774774 −8.54909e15 −1.10623
775775 1.84921e16 2.37590
776776 −3.05438e16 −3.89658
777777 9.32801e15 1.18161
778778 1.87244e16 2.35516
779779 4.29477e14 0.0536395
780780 9.05629e16 11.2313
781781 −4.99679e15 −0.615334
782782 −1.55049e16 −1.89597
783783 1.51378e16 1.83812
784784 1.24340e16 1.49924
785785 1.94594e16 2.32995
786786 2.14486e16 2.55021
787787 9.57063e15 1.13000 0.565002 0.825090i 0.308876π-0.308876\pi
0.565002 + 0.825090i 0.308876π0.308876\pi
788788 −1.64557e15 −0.192940
789789 9.40374e15 1.09491
790790 −3.11423e16 −3.60083
791791 −1.09236e16 −1.25429
792792 3.27274e16 3.73184
793793 −9.63764e15 −1.09136
794794 1.21709e16 1.36870
795795 −5.55470e14 −0.0620356
796796 1.42246e16 1.57767
797797 2.69107e15 0.296418 0.148209 0.988956i 0.452649π-0.452649\pi
0.148209 + 0.988956i 0.452649π0.452649\pi
798798 −4.10091e15 −0.448605
799799 −7.18279e15 −0.780343
800800 −7.76475e16 −8.37785
801801 −3.83876e16 −4.11351
802802 3.12031e16 3.32077
803803 −4.25709e15 −0.449964
804804 3.45302e16 3.62485
805805 3.73068e16 3.88965
806806 −2.39119e16 −2.47611
807807 −2.27083e16 −2.33550
808808 −4.03781e16 −4.12461
809809 −1.22996e16 −1.24788 −0.623942 0.781471i 0.714470π-0.714470\pi
−0.623942 + 0.781471i 0.714470π0.714470\pi
810810 −9.34918e16 −9.42119
811811 1.42153e16 1.42279 0.711395 0.702792i 0.248064π-0.248064\pi
0.711395 + 0.702792i 0.248064π0.248064\pi
812812 −2.14047e16 −2.12789
813813 −1.37863e16 −1.36129
814814 −4.76226e15 −0.467067
815815 −3.65543e15 −0.356100
816816 −3.80820e16 −3.68489
817817 −2.51922e14 −0.0242128
818818 −1.32530e16 −1.26523
819819 −3.83219e16 −3.63401
820820 −2.65789e16 −2.50357
821821 1.42313e16 1.33155 0.665773 0.746154i 0.268102π-0.268102\pi
0.665773 + 0.746154i 0.268102π0.268102\pi
822822 −3.83961e16 −3.56855
823823 −3.08929e15 −0.285206 −0.142603 0.989780i 0.545547π-0.545547\pi
−0.142603 + 0.989780i 0.545547π0.545547\pi
824824 −3.35682e16 −3.07842
825825 −2.12092e16 −1.93209
826826 1.10637e16 1.00118
827827 1.91274e16 1.71940 0.859698 0.510802i 0.170652π-0.170652\pi
0.859698 + 0.510802i 0.170652π0.170652\pi
828828 −1.36580e17 −12.1961
829829 2.34185e15 0.207735 0.103867 0.994591i 0.466878π-0.466878\pi
0.103867 + 0.994591i 0.466878π0.466878\pi
830830 −6.85865e16 −6.04378
831831 −3.84708e16 −3.36764
832832 4.92062e16 4.27899
833833 −2.60478e15 −0.225021
834834 −2.46621e16 −2.11649
835835 −3.44061e15 −0.293332
836836 1.52903e15 0.129503
837837 3.46102e16 2.91216
838838 2.03522e16 1.70125
839839 2.07683e16 1.72468 0.862342 0.506326i 0.168997π-0.168997\pi
0.862342 + 0.506326i 0.168997π0.168997\pi
840840 1.60073e17 13.2064
841841 −6.87132e15 −0.563199
842842 −6.97590e15 −0.568047
843843 −5.45326e15 −0.441168
844844 −3.52627e15 −0.283421
845845 1.15046e16 0.918672
846846 −8.66362e16 −6.87326
847847 1.19492e16 0.941850
848848 −8.50397e14 −0.0665954
849849 4.67949e16 3.64088
850850 3.07564e16 2.37756
851851 1.25352e16 0.962762
852852 8.94742e16 6.82779
853853 −1.94025e16 −1.47108 −0.735541 0.677480i 0.763072π-0.763072\pi
−0.735541 + 0.677480i 0.763072π0.763072\pi
854854 −2.70083e16 −2.03460
855855 −6.30716e15 −0.472085
856856 −2.37825e16 −1.76869
857857 3.13237e15 0.231462 0.115731 0.993281i 0.463079π-0.463079\pi
0.115731 + 0.993281i 0.463079π0.463079\pi
858858 2.74252e16 2.01358
859859 −1.69679e15 −0.123785 −0.0618923 0.998083i 0.519714π-0.519714\pi
−0.0618923 + 0.998083i 0.519714π0.519714\pi
860860 1.55906e16 1.13011
861861 1.57656e16 1.13552
862862 −3.05077e16 −2.18333
863863 −1.62531e16 −1.15578 −0.577891 0.816114i 0.696124π-0.696124\pi
−0.577891 + 0.816114i 0.696124π0.696124\pi
864864 −1.45326e17 −10.2688
865865 −1.13151e16 −0.794454
866866 1.37355e16 0.958291
867867 −1.89657e16 −1.31481
868868 −4.89384e16 −3.37125
869869 −6.88750e15 −0.471468
870870 −6.31872e16 −4.29807
871871 1.30197e16 0.880039
872872 1.16231e16 0.780695
873873 4.41783e16 2.94870
874874 −5.51090e15 −0.365519
875875 −4.13893e16 −2.72800
876876 7.62289e16 4.99283
877877 8.57996e15 0.558454 0.279227 0.960225i 0.409922π-0.409922\pi
0.279227 + 0.960225i 0.409922π0.409922\pi
878878 4.35980e16 2.81998
879879 3.49743e15 0.224807
880880 −4.67802e16 −2.98818
881881 1.89430e16 1.20249 0.601246 0.799064i 0.294671π-0.294671\pi
0.601246 + 0.799064i 0.294671π0.294671\pi
882882 −3.14179e16 −1.98198
883883 −1.01854e16 −0.638551 −0.319275 0.947662i 0.603440π-0.603440\pi
−0.319275 + 0.947662i 0.603440π0.603440\pi
884884 −2.90450e16 −1.80961
885885 2.38525e16 1.47688
886886 −2.42568e16 −1.49262
887887 3.01644e15 0.184465 0.0922326 0.995737i 0.470600π-0.470600\pi
0.0922326 + 0.995737i 0.470600π0.470600\pi
888888 5.37852e16 3.26883
889889 2.89078e16 1.74605
890890 9.58567e16 5.75410
891891 −2.06768e16 −1.23355
892892 4.93407e16 2.92549
893893 −2.55297e15 −0.150440
894894 9.08934e16 5.32324
895895 −2.13115e16 −1.24047
896896 6.20129e16 3.58747
897897 −7.21885e16 −4.15059
898898 4.12963e16 2.35989
899899 1.21844e16 0.692030
900900 2.70927e17 15.2939
901901 1.78148e14 0.00999530
902902 −8.04889e15 −0.448849
903903 −9.24778e15 −0.512572
904904 −6.29856e16 −3.46989
905905 −2.14814e16 −1.17624
906906 −1.05799e17 −5.75809
907907 −5.94995e15 −0.321865 −0.160932 0.986965i 0.551450π-0.551450\pi
−0.160932 + 0.986965i 0.551450π0.551450\pi
908908 −4.00858e16 −2.15535
909909 5.84025e16 3.12126
910910 9.56928e16 5.08337
911911 3.48799e15 0.184172 0.0920861 0.995751i 0.470647π-0.470647\pi
0.0920861 + 0.995751i 0.470647π0.470647\pi
912912 −1.35355e16 −0.710397
913913 −1.51687e16 −0.791333
914914 3.66802e16 1.90208
915915 −5.82275e16 −3.00132
916916 −2.94245e16 −1.50759
917917 1.65516e16 0.842961
918918 5.75642e16 2.91419
919919 −9.47651e15 −0.476885 −0.238442 0.971157i 0.576637π-0.576637\pi
−0.238442 + 0.971157i 0.576637π0.576637\pi
920920 2.15110e17 10.7604
921921 3.42167e16 1.70141
922922 −4.59159e16 −2.26957
923923 3.37366e16 1.65765
924924 5.61289e16 2.74151
925925 −2.48655e16 −1.20731
926926 −3.79818e16 −1.83322
927927 4.85527e16 2.32956
928928 −5.11615e16 −2.44022
929929 −1.03025e16 −0.488492 −0.244246 0.969713i 0.578540π-0.578540\pi
−0.244246 + 0.969713i 0.578540π0.578540\pi
930930 −1.44468e17 −6.80949
931931 −9.25813e14 −0.0433811
932932 −5.40931e15 −0.251973
933933 4.63675e15 0.214716
934934 −3.47385e16 −1.59920
935935 9.79992e15 0.448496
936936 −2.20964e17 −10.0532
937937 2.53627e15 0.114717 0.0573584 0.998354i 0.481732π-0.481732\pi
0.0573584 + 0.998354i 0.481732π0.481732\pi
938938 3.64861e16 1.64063
939939 2.38286e16 1.06521
940940 1.57994e17 7.02164
941941 3.43149e15 0.151614 0.0758072 0.997122i 0.475847π-0.475847\pi
0.0758072 + 0.997122i 0.475847π0.475847\pi
942942 −1.05520e17 −4.63508
943943 2.11862e16 0.925209
944944 3.65169e16 1.58544
945945 −1.38507e17 −5.97854
946946 4.72130e15 0.202610
947947 1.77905e16 0.759038 0.379519 0.925184i 0.376090π-0.376090\pi
0.379519 + 0.925184i 0.376090π0.376090\pi
948948 1.23330e17 5.23145
949949 2.87424e16 1.21216
950950 1.09317e16 0.458361
951951 −6.64829e15 −0.277151
952952 −5.13382e16 −2.12783
953953 1.39263e16 0.573886 0.286943 0.957948i 0.407361π-0.407361\pi
0.286943 + 0.957948i 0.407361π0.407361\pi
954954 2.14876e15 0.0880385
955955 3.49967e16 1.42564
956956 −8.97449e16 −3.63489
957957 −1.39746e16 −0.562761
958958 −1.00740e16 −0.403358
959959 −2.96297e16 −1.17957
960960 2.97288e17 11.7675
961961 2.44920e15 0.0963930
962962 3.21531e16 1.25823
963963 3.43987e16 1.33844
964964 1.72176e14 0.00666115
965965 3.54021e15 0.136185
966966 −2.02299e17 −7.73784
967967 −4.21314e15 −0.160236 −0.0801180 0.996785i 0.525530π-0.525530\pi
−0.0801180 + 0.996785i 0.525530π0.525530\pi
968968 6.88993e16 2.60555
969969 2.83552e15 0.106623
970970 −1.10317e17 −4.12474
971971 −1.89268e16 −0.703674 −0.351837 0.936061i 0.614443π-0.614443\pi
−0.351837 + 0.936061i 0.614443π0.614443\pi
972972 1.66518e17 6.15596
973973 −1.90314e16 −0.699599
974974 −3.51458e16 −1.28469
975975 1.43197e17 5.20485
976976 −8.91435e16 −3.22193
977977 1.55524e16 0.558956 0.279478 0.960152i 0.409839π-0.409839\pi
0.279478 + 0.960152i 0.409839π0.409839\pi
978978 1.98219e16 0.708405
979979 2.11999e16 0.753404
980980 5.72953e16 2.02477
981981 −1.68115e16 −0.590783
982982 −4.04719e16 −1.41430
983983 −4.23979e16 −1.47333 −0.736665 0.676258i 0.763600π-0.763600\pi
−0.736665 + 0.676258i 0.763600π0.763600\pi
984984 9.09046e16 3.14132
985985 −3.74867e15 −0.128818
986986 2.02652e16 0.692513
987987 −9.37168e16 −3.18473
988988 −1.03234e16 −0.348868
989989 −1.24274e16 −0.417638
990990 1.18203e17 3.95035
991991 −1.03132e16 −0.342757 −0.171379 0.985205i 0.554822π-0.554822\pi
−0.171379 + 0.985205i 0.554822π0.554822\pi
992992 −1.16973e17 −3.86608
993993 −8.52475e16 −2.80195
994994 9.45425e16 3.09031
995995 3.24041e16 1.05335
996996 2.71616e17 8.78070
997997 2.96304e16 0.952609 0.476304 0.879280i 0.341976π-0.341976\pi
0.476304 + 0.879280i 0.341976π0.341976\pi
998998 −3.25380e16 −1.04033
999999 −4.65387e16 −1.47980
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.12.a.b.1.2 92
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.12.a.b.1.2 92 1.1 even 1 trivial