Properties

Label 197.14.a.a.1.13
Level $197$
Weight $14$
Character 197.1
Self dual yes
Analytic conductor $211.245$
Analytic rank $1$
Dimension $104$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,14,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(211.244930035\)
Analytic rank: \(1\)
Dimension: \(104\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-146.034 q^{2} -203.966 q^{3} +13133.8 q^{4} -50263.7 q^{5} +29785.9 q^{6} -418854. q^{7} -721672. q^{8} -1.55272e6 q^{9} +7.34019e6 q^{10} -3.57704e6 q^{11} -2.67886e6 q^{12} -3.21000e7 q^{13} +6.11668e7 q^{14} +1.02521e7 q^{15} -2.20388e6 q^{16} -7.27608e7 q^{17} +2.26749e8 q^{18} -7.39711e7 q^{19} -6.60155e8 q^{20} +8.54321e7 q^{21} +5.22368e8 q^{22} -6.55864e8 q^{23} +1.47197e8 q^{24} +1.30574e9 q^{25} +4.68767e9 q^{26} +6.41891e8 q^{27} -5.50116e9 q^{28} -3.76330e9 q^{29} -1.49715e9 q^{30} -3.37261e9 q^{31} +6.23378e9 q^{32} +7.29595e8 q^{33} +1.06255e10 q^{34} +2.10532e10 q^{35} -2.03932e10 q^{36} +2.33861e10 q^{37} +1.08023e10 q^{38} +6.54731e9 q^{39} +3.62739e10 q^{40} -1.28633e10 q^{41} -1.24760e10 q^{42} +1.05664e10 q^{43} -4.69802e10 q^{44} +7.80455e10 q^{45} +9.57782e10 q^{46} -2.28358e10 q^{47} +4.49518e8 q^{48} +7.85499e10 q^{49} -1.90682e11 q^{50} +1.48407e10 q^{51} -4.21595e11 q^{52} +1.04399e11 q^{53} -9.37376e10 q^{54} +1.79795e11 q^{55} +3.02275e11 q^{56} +1.50876e10 q^{57} +5.49568e11 q^{58} -1.62045e11 q^{59} +1.34649e11 q^{60} -4.12566e11 q^{61} +4.92514e11 q^{62} +6.50364e11 q^{63} -8.92287e11 q^{64} +1.61346e12 q^{65} -1.06545e11 q^{66} -7.46287e11 q^{67} -9.55627e11 q^{68} +1.33774e11 q^{69} -3.07447e12 q^{70} -1.39356e12 q^{71} +1.12056e12 q^{72} -1.34651e12 q^{73} -3.41516e12 q^{74} -2.66326e11 q^{75} -9.71524e11 q^{76} +1.49826e12 q^{77} -9.56127e11 q^{78} -1.02991e12 q^{79} +1.10775e11 q^{80} +2.34461e12 q^{81} +1.87847e12 q^{82} -1.85519e12 q^{83} +1.12205e12 q^{84} +3.65723e12 q^{85} -1.54305e12 q^{86} +7.67586e11 q^{87} +2.58145e12 q^{88} +7.32016e12 q^{89} -1.13973e13 q^{90} +1.34452e13 q^{91} -8.61400e12 q^{92} +6.87898e11 q^{93} +3.33480e12 q^{94} +3.71806e12 q^{95} -1.27148e12 q^{96} -9.99692e12 q^{97} -1.14709e13 q^{98} +5.55414e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 104 q - 128 q^{2} - 8020 q^{3} + 409600 q^{4} - 99004 q^{5} - 83328 q^{6} - 2084037 q^{7} - 2111301 q^{8} + 51549776 q^{9} - 9626347 q^{10} - 10688800 q^{11} - 68157440 q^{12} - 94762650 q^{13} - 52465903 q^{14}+ \cdots - 8666459567773 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −146.034 −1.61346 −0.806729 0.590921i \(-0.798764\pi\)
−0.806729 + 0.590921i \(0.798764\pi\)
\(3\) −203.966 −0.161536 −0.0807682 0.996733i \(-0.525737\pi\)
−0.0807682 + 0.996733i \(0.525737\pi\)
\(4\) 13133.8 1.60325
\(5\) −50263.7 −1.43863 −0.719316 0.694683i \(-0.755545\pi\)
−0.719316 + 0.694683i \(0.755545\pi\)
\(6\) 29785.9 0.260632
\(7\) −418854. −1.34563 −0.672815 0.739811i \(-0.734915\pi\)
−0.672815 + 0.739811i \(0.734915\pi\)
\(8\) −721672. −0.973318
\(9\) −1.55272e6 −0.973906
\(10\) 7.34019e6 2.32117
\(11\) −3.57704e6 −0.608795 −0.304397 0.952545i \(-0.598455\pi\)
−0.304397 + 0.952545i \(0.598455\pi\)
\(12\) −2.67886e6 −0.258983
\(13\) −3.21000e7 −1.84447 −0.922237 0.386624i \(-0.873641\pi\)
−0.922237 + 0.386624i \(0.873641\pi\)
\(14\) 6.11668e7 2.17112
\(15\) 1.02521e7 0.232391
\(16\) −2.20388e6 −0.0328404
\(17\) −7.27608e7 −0.731104 −0.365552 0.930791i \(-0.619120\pi\)
−0.365552 + 0.930791i \(0.619120\pi\)
\(18\) 2.26749e8 1.57136
\(19\) −7.39711e7 −0.360715 −0.180357 0.983601i \(-0.557725\pi\)
−0.180357 + 0.983601i \(0.557725\pi\)
\(20\) −6.60155e8 −2.30649
\(21\) 8.54321e7 0.217368
\(22\) 5.22368e8 0.982266
\(23\) −6.55864e8 −0.923811 −0.461905 0.886929i \(-0.652834\pi\)
−0.461905 + 0.886929i \(0.652834\pi\)
\(24\) 1.47197e8 0.157226
\(25\) 1.30574e9 1.06966
\(26\) 4.68767e9 2.97598
\(27\) 6.41891e8 0.318857
\(28\) −5.50116e9 −2.15738
\(29\) −3.76330e9 −1.17485 −0.587424 0.809279i \(-0.699858\pi\)
−0.587424 + 0.809279i \(0.699858\pi\)
\(30\) −1.49715e9 −0.374954
\(31\) −3.37261e9 −0.682519 −0.341259 0.939969i \(-0.610853\pi\)
−0.341259 + 0.939969i \(0.610853\pi\)
\(32\) 6.23378e9 1.02631
\(33\) 7.29595e8 0.0983425
\(34\) 1.06255e10 1.17961
\(35\) 2.10532e10 1.93587
\(36\) −2.03932e10 −1.56141
\(37\) 2.33861e10 1.49846 0.749232 0.662307i \(-0.230423\pi\)
0.749232 + 0.662307i \(0.230423\pi\)
\(38\) 1.08023e10 0.581998
\(39\) 6.54731e9 0.297950
\(40\) 3.62739e10 1.40025
\(41\) −1.28633e10 −0.422918 −0.211459 0.977387i \(-0.567822\pi\)
−0.211459 + 0.977387i \(0.567822\pi\)
\(42\) −1.24760e10 −0.350715
\(43\) 1.05664e10 0.254907 0.127454 0.991845i \(-0.459320\pi\)
0.127454 + 0.991845i \(0.459320\pi\)
\(44\) −4.69802e10 −0.976050
\(45\) 7.80455e10 1.40109
\(46\) 9.57782e10 1.49053
\(47\) −2.28358e10 −0.309016 −0.154508 0.987992i \(-0.549379\pi\)
−0.154508 + 0.987992i \(0.549379\pi\)
\(48\) 4.49518e8 0.00530492
\(49\) 7.85499e10 0.810721
\(50\) −1.90682e11 −1.72585
\(51\) 1.48407e10 0.118100
\(52\) −4.21595e11 −2.95715
\(53\) 1.04399e11 0.647000 0.323500 0.946228i \(-0.395140\pi\)
0.323500 + 0.946228i \(0.395140\pi\)
\(54\) −9.37376e10 −0.514463
\(55\) 1.79795e11 0.875832
\(56\) 3.02275e11 1.30973
\(57\) 1.50876e10 0.0582685
\(58\) 5.49568e11 1.89557
\(59\) −1.62045e11 −0.500146 −0.250073 0.968227i \(-0.580455\pi\)
−0.250073 + 0.968227i \(0.580455\pi\)
\(60\) 1.34649e11 0.372581
\(61\) −4.12566e11 −1.02530 −0.512648 0.858599i \(-0.671335\pi\)
−0.512648 + 0.858599i \(0.671335\pi\)
\(62\) 4.92514e11 1.10122
\(63\) 6.50364e11 1.31052
\(64\) −8.92287e11 −1.62306
\(65\) 1.61346e12 2.65352
\(66\) −1.06545e11 −0.158672
\(67\) −7.46287e11 −1.00791 −0.503953 0.863731i \(-0.668121\pi\)
−0.503953 + 0.863731i \(0.668121\pi\)
\(68\) −9.55627e11 −1.17214
\(69\) 1.33774e11 0.149229
\(70\) −3.07447e12 −3.12344
\(71\) −1.39356e12 −1.29106 −0.645531 0.763734i \(-0.723364\pi\)
−0.645531 + 0.763734i \(0.723364\pi\)
\(72\) 1.12056e12 0.947921
\(73\) −1.34651e12 −1.04139 −0.520693 0.853744i \(-0.674326\pi\)
−0.520693 + 0.853744i \(0.674326\pi\)
\(74\) −3.41516e12 −2.41771
\(75\) −2.66326e11 −0.172789
\(76\) −9.71524e11 −0.578316
\(77\) 1.49826e12 0.819213
\(78\) −9.56127e11 −0.480730
\(79\) −1.02991e12 −0.476675 −0.238338 0.971182i \(-0.576602\pi\)
−0.238338 + 0.971182i \(0.576602\pi\)
\(80\) 1.10775e11 0.0472453
\(81\) 2.34461e12 0.922399
\(82\) 1.87847e12 0.682361
\(83\) −1.85519e12 −0.622847 −0.311424 0.950271i \(-0.600806\pi\)
−0.311424 + 0.950271i \(0.600806\pi\)
\(84\) 1.12205e12 0.348495
\(85\) 3.65723e12 1.05179
\(86\) −1.54305e12 −0.411282
\(87\) 7.67586e11 0.189781
\(88\) 2.58145e12 0.592551
\(89\) 7.32016e12 1.56130 0.780648 0.624971i \(-0.214889\pi\)
0.780648 + 0.624971i \(0.214889\pi\)
\(90\) −1.13973e13 −2.26060
\(91\) 1.34452e13 2.48198
\(92\) −8.61400e12 −1.48110
\(93\) 6.87898e11 0.110252
\(94\) 3.33480e12 0.498584
\(95\) 3.71806e12 0.518936
\(96\) −1.27148e12 −0.165786
\(97\) −9.99692e12 −1.21857 −0.609284 0.792952i \(-0.708543\pi\)
−0.609284 + 0.792952i \(0.708543\pi\)
\(98\) −1.14709e13 −1.30806
\(99\) 5.55414e12 0.592909
\(100\) 1.71493e13 1.71493
\(101\) 7.93968e12 0.744242 0.372121 0.928184i \(-0.378631\pi\)
0.372121 + 0.928184i \(0.378631\pi\)
\(102\) −2.16725e12 −0.190549
\(103\) 1.36027e13 1.12249 0.561244 0.827650i \(-0.310323\pi\)
0.561244 + 0.827650i \(0.310323\pi\)
\(104\) 2.31656e13 1.79526
\(105\) −4.29414e12 −0.312713
\(106\) −1.52458e13 −1.04391
\(107\) −9.30370e11 −0.0599323 −0.0299662 0.999551i \(-0.509540\pi\)
−0.0299662 + 0.999551i \(0.509540\pi\)
\(108\) 8.43048e12 0.511208
\(109\) 2.77639e13 1.58565 0.792825 0.609449i \(-0.208609\pi\)
0.792825 + 0.609449i \(0.208609\pi\)
\(110\) −2.62561e13 −1.41312
\(111\) −4.76997e12 −0.242056
\(112\) 9.23106e11 0.0441911
\(113\) −3.76219e12 −0.169993 −0.0849965 0.996381i \(-0.527088\pi\)
−0.0849965 + 0.996381i \(0.527088\pi\)
\(114\) −2.20330e12 −0.0940139
\(115\) 3.29662e13 1.32902
\(116\) −4.94265e13 −1.88357
\(117\) 4.98423e13 1.79635
\(118\) 2.36640e13 0.806965
\(119\) 3.04762e13 0.983796
\(120\) −7.39865e12 −0.226191
\(121\) −2.17275e13 −0.629369
\(122\) 6.02484e13 1.65427
\(123\) 2.62367e12 0.0683167
\(124\) −4.42952e13 −1.09425
\(125\) −4.27416e12 −0.100216
\(126\) −9.49750e13 −2.11447
\(127\) 6.61939e13 1.39989 0.699945 0.714197i \(-0.253208\pi\)
0.699945 + 0.714197i \(0.253208\pi\)
\(128\) 7.92368e13 1.59244
\(129\) −2.15519e12 −0.0411768
\(130\) −2.35620e14 −4.28134
\(131\) −2.16973e13 −0.375096 −0.187548 0.982255i \(-0.560054\pi\)
−0.187548 + 0.982255i \(0.560054\pi\)
\(132\) 9.58237e12 0.157668
\(133\) 3.09831e13 0.485389
\(134\) 1.08983e14 1.62621
\(135\) −3.22638e13 −0.458718
\(136\) 5.25094e13 0.711597
\(137\) 3.31332e13 0.428134 0.214067 0.976819i \(-0.431329\pi\)
0.214067 + 0.976819i \(0.431329\pi\)
\(138\) −1.95355e13 −0.240775
\(139\) −1.28112e13 −0.150658 −0.0753290 0.997159i \(-0.524001\pi\)
−0.0753290 + 0.997159i \(0.524001\pi\)
\(140\) 2.76509e14 3.10368
\(141\) 4.65774e12 0.0499173
\(142\) 2.03507e14 2.08307
\(143\) 1.14823e14 1.12291
\(144\) 3.42202e12 0.0319835
\(145\) 1.89157e14 1.69017
\(146\) 1.96636e14 1.68023
\(147\) −1.60215e13 −0.130961
\(148\) 3.07149e14 2.40241
\(149\) 2.35853e13 0.176576 0.0882878 0.996095i \(-0.471860\pi\)
0.0882878 + 0.996095i \(0.471860\pi\)
\(150\) 3.88926e13 0.278788
\(151\) −3.09147e13 −0.212234 −0.106117 0.994354i \(-0.533842\pi\)
−0.106117 + 0.994354i \(0.533842\pi\)
\(152\) 5.33829e13 0.351090
\(153\) 1.12977e14 0.712027
\(154\) −2.18796e14 −1.32177
\(155\) 1.69520e14 0.981893
\(156\) 8.59912e13 0.477688
\(157\) −2.65473e14 −1.41473 −0.707363 0.706851i \(-0.750115\pi\)
−0.707363 + 0.706851i \(0.750115\pi\)
\(158\) 1.50401e14 0.769096
\(159\) −2.12939e13 −0.104514
\(160\) −3.13333e14 −1.47647
\(161\) 2.74712e14 1.24311
\(162\) −3.42393e14 −1.48825
\(163\) 1.66316e14 0.694566 0.347283 0.937760i \(-0.387104\pi\)
0.347283 + 0.937760i \(0.387104\pi\)
\(164\) −1.68944e14 −0.678044
\(165\) −3.66721e13 −0.141479
\(166\) 2.70921e14 1.00494
\(167\) 2.03524e14 0.726035 0.363018 0.931782i \(-0.381746\pi\)
0.363018 + 0.931782i \(0.381746\pi\)
\(168\) −6.16540e13 −0.211568
\(169\) 7.27532e14 2.40209
\(170\) −5.34078e14 −1.69702
\(171\) 1.14857e14 0.351302
\(172\) 1.38777e14 0.408680
\(173\) −2.86935e13 −0.0813738 −0.0406869 0.999172i \(-0.512955\pi\)
−0.0406869 + 0.999172i \(0.512955\pi\)
\(174\) −1.12093e14 −0.306203
\(175\) −5.46914e14 −1.43937
\(176\) 7.88337e12 0.0199931
\(177\) 3.30517e13 0.0807918
\(178\) −1.06899e15 −2.51909
\(179\) −9.20345e12 −0.0209125 −0.0104563 0.999945i \(-0.503328\pi\)
−0.0104563 + 0.999945i \(0.503328\pi\)
\(180\) 1.02504e15 2.24630
\(181\) −6.16406e13 −0.130304 −0.0651518 0.997875i \(-0.520753\pi\)
−0.0651518 + 0.997875i \(0.520753\pi\)
\(182\) −1.96345e15 −4.00457
\(183\) 8.41495e13 0.165622
\(184\) 4.73319e14 0.899162
\(185\) −1.17547e15 −2.15574
\(186\) −1.00456e14 −0.177886
\(187\) 2.60268e14 0.445093
\(188\) −2.99922e14 −0.495429
\(189\) −2.68859e14 −0.429064
\(190\) −5.42962e14 −0.837281
\(191\) −7.53720e14 −1.12329 −0.561647 0.827377i \(-0.689832\pi\)
−0.561647 + 0.827377i \(0.689832\pi\)
\(192\) 1.81996e14 0.262183
\(193\) −9.91457e14 −1.38087 −0.690433 0.723396i \(-0.742580\pi\)
−0.690433 + 0.723396i \(0.742580\pi\)
\(194\) 1.45989e15 1.96611
\(195\) −3.29092e14 −0.428640
\(196\) 1.03166e15 1.29979
\(197\) −5.84517e13 −0.0712470
\(198\) −8.11091e14 −0.956634
\(199\) −9.04020e14 −1.03189 −0.515944 0.856622i \(-0.672559\pi\)
−0.515944 + 0.856622i \(0.672559\pi\)
\(200\) −9.42314e14 −1.04112
\(201\) 1.52217e14 0.162813
\(202\) −1.15946e15 −1.20080
\(203\) 1.57627e15 1.58091
\(204\) 1.94916e14 0.189344
\(205\) 6.46556e14 0.608424
\(206\) −1.98645e15 −1.81109
\(207\) 1.01837e15 0.899705
\(208\) 7.07446e13 0.0605733
\(209\) 2.64598e14 0.219601
\(210\) 6.27088e14 0.504549
\(211\) 1.90858e15 1.48893 0.744466 0.667660i \(-0.232704\pi\)
0.744466 + 0.667660i \(0.232704\pi\)
\(212\) 1.37116e15 1.03730
\(213\) 2.84239e14 0.208553
\(214\) 1.35865e14 0.0966983
\(215\) −5.31107e14 −0.366718
\(216\) −4.63235e14 −0.310350
\(217\) 1.41263e15 0.918418
\(218\) −4.05446e15 −2.55838
\(219\) 2.74643e14 0.168222
\(220\) 2.36140e15 1.40418
\(221\) 2.33562e15 1.34850
\(222\) 6.96577e14 0.390548
\(223\) −2.49410e15 −1.35810 −0.679051 0.734091i \(-0.737608\pi\)
−0.679051 + 0.734091i \(0.737608\pi\)
\(224\) −2.61104e15 −1.38103
\(225\) −2.02745e15 −1.04175
\(226\) 5.49406e14 0.274277
\(227\) 3.25549e14 0.157924 0.0789620 0.996878i \(-0.474839\pi\)
0.0789620 + 0.996878i \(0.474839\pi\)
\(228\) 1.98158e14 0.0934190
\(229\) 1.09573e15 0.502081 0.251040 0.967977i \(-0.419227\pi\)
0.251040 + 0.967977i \(0.419227\pi\)
\(230\) −4.81417e15 −2.14432
\(231\) −3.05594e14 −0.132333
\(232\) 2.71587e15 1.14350
\(233\) −2.46372e15 −1.00874 −0.504368 0.863489i \(-0.668275\pi\)
−0.504368 + 0.863489i \(0.668275\pi\)
\(234\) −7.27865e15 −2.89833
\(235\) 1.14781e15 0.444560
\(236\) −2.12827e15 −0.801859
\(237\) 2.10067e14 0.0770004
\(238\) −4.45055e15 −1.58731
\(239\) 1.31872e15 0.457686 0.228843 0.973463i \(-0.426506\pi\)
0.228843 + 0.973463i \(0.426506\pi\)
\(240\) −2.25944e13 −0.00763183
\(241\) 2.24478e15 0.738011 0.369006 0.929427i \(-0.379698\pi\)
0.369006 + 0.929427i \(0.379698\pi\)
\(242\) 3.17295e15 1.01546
\(243\) −1.50160e15 −0.467858
\(244\) −5.41856e15 −1.64380
\(245\) −3.94821e15 −1.16633
\(246\) −3.83145e14 −0.110226
\(247\) 2.37447e15 0.665329
\(248\) 2.43392e15 0.664308
\(249\) 3.78397e14 0.100612
\(250\) 6.24172e14 0.161694
\(251\) −2.36311e15 −0.596491 −0.298246 0.954489i \(-0.596401\pi\)
−0.298246 + 0.954489i \(0.596401\pi\)
\(252\) 8.54176e15 2.10109
\(253\) 2.34605e15 0.562411
\(254\) −9.66653e15 −2.25866
\(255\) −7.45951e14 −0.169902
\(256\) −4.26162e15 −0.946270
\(257\) 8.01003e15 1.73408 0.867040 0.498239i \(-0.166020\pi\)
0.867040 + 0.498239i \(0.166020\pi\)
\(258\) 3.14730e14 0.0664370
\(259\) −9.79537e15 −2.01638
\(260\) 2.11909e16 4.25425
\(261\) 5.84335e15 1.14419
\(262\) 3.16853e15 0.605202
\(263\) −3.03022e15 −0.564627 −0.282314 0.959322i \(-0.591102\pi\)
−0.282314 + 0.959322i \(0.591102\pi\)
\(264\) −5.26528e14 −0.0957185
\(265\) −5.24749e15 −0.930794
\(266\) −4.52458e15 −0.783155
\(267\) −1.49307e15 −0.252206
\(268\) −9.80160e15 −1.61592
\(269\) 9.34088e15 1.50313 0.751567 0.659657i \(-0.229298\pi\)
0.751567 + 0.659657i \(0.229298\pi\)
\(270\) 4.71160e15 0.740123
\(271\) 1.00893e16 1.54725 0.773627 0.633641i \(-0.218440\pi\)
0.773627 + 0.633641i \(0.218440\pi\)
\(272\) 1.60356e14 0.0240098
\(273\) −2.74237e15 −0.400930
\(274\) −4.83856e15 −0.690776
\(275\) −4.67067e15 −0.651204
\(276\) 1.75697e15 0.239251
\(277\) −1.38991e16 −1.84870 −0.924351 0.381542i \(-0.875393\pi\)
−0.924351 + 0.381542i \(0.875393\pi\)
\(278\) 1.87086e15 0.243081
\(279\) 5.23672e15 0.664709
\(280\) −1.51935e16 −1.88421
\(281\) −5.72722e15 −0.693989 −0.346994 0.937867i \(-0.612798\pi\)
−0.346994 + 0.937867i \(0.612798\pi\)
\(282\) −6.80186e14 −0.0805395
\(283\) −1.05835e16 −1.22467 −0.612334 0.790599i \(-0.709769\pi\)
−0.612334 + 0.790599i \(0.709769\pi\)
\(284\) −1.83028e16 −2.06989
\(285\) −7.58360e14 −0.0838269
\(286\) −1.67680e16 −1.81176
\(287\) 5.38784e15 0.569092
\(288\) −9.67932e15 −0.999525
\(289\) −4.61045e15 −0.465486
\(290\) −2.76233e16 −2.72702
\(291\) 2.03903e15 0.196843
\(292\) −1.76849e16 −1.66960
\(293\) −2.10081e16 −1.93976 −0.969878 0.243591i \(-0.921675\pi\)
−0.969878 + 0.243591i \(0.921675\pi\)
\(294\) 2.33968e15 0.211300
\(295\) 8.14497e15 0.719526
\(296\) −1.68771e16 −1.45848
\(297\) −2.29607e15 −0.194119
\(298\) −3.44425e15 −0.284897
\(299\) 2.10532e16 1.70395
\(300\) −3.49788e15 −0.277024
\(301\) −4.42578e15 −0.343011
\(302\) 4.51459e15 0.342431
\(303\) −1.61943e15 −0.120222
\(304\) 1.63024e14 0.0118460
\(305\) 2.07371e16 1.47502
\(306\) −1.64985e16 −1.14883
\(307\) −1.52897e16 −1.04232 −0.521158 0.853460i \(-0.674500\pi\)
−0.521158 + 0.853460i \(0.674500\pi\)
\(308\) 1.96778e16 1.31340
\(309\) −2.77448e15 −0.181323
\(310\) −2.47556e16 −1.58424
\(311\) 1.80466e16 1.13098 0.565488 0.824757i \(-0.308688\pi\)
0.565488 + 0.824757i \(0.308688\pi\)
\(312\) −4.72501e15 −0.290000
\(313\) −2.53518e15 −0.152395 −0.0761975 0.997093i \(-0.524278\pi\)
−0.0761975 + 0.997093i \(0.524278\pi\)
\(314\) 3.87679e16 2.28260
\(315\) −3.26897e16 −1.88535
\(316\) −1.35266e16 −0.764229
\(317\) −3.87801e15 −0.214646 −0.107323 0.994224i \(-0.534228\pi\)
−0.107323 + 0.994224i \(0.534228\pi\)
\(318\) 3.10963e15 0.168629
\(319\) 1.34615e16 0.715241
\(320\) 4.48497e16 2.33499
\(321\) 1.89764e14 0.00968125
\(322\) −4.01171e16 −2.00570
\(323\) 5.38220e15 0.263720
\(324\) 3.07937e16 1.47884
\(325\) −4.19141e16 −1.97296
\(326\) −2.42877e16 −1.12065
\(327\) −5.66289e15 −0.256140
\(328\) 9.28307e15 0.411634
\(329\) 9.56489e15 0.415821
\(330\) 5.35537e15 0.228270
\(331\) 2.14217e15 0.0895308 0.0447654 0.998998i \(-0.485746\pi\)
0.0447654 + 0.998998i \(0.485746\pi\)
\(332\) −2.43658e16 −0.998580
\(333\) −3.63121e16 −1.45936
\(334\) −2.97213e16 −1.17143
\(335\) 3.75112e16 1.45000
\(336\) −1.88282e14 −0.00713846
\(337\) −4.65719e16 −1.73193 −0.865963 0.500108i \(-0.833294\pi\)
−0.865963 + 0.500108i \(0.833294\pi\)
\(338\) −1.06244e17 −3.87567
\(339\) 7.67360e14 0.0274600
\(340\) 4.80334e16 1.68628
\(341\) 1.20639e16 0.415514
\(342\) −1.67729e16 −0.566812
\(343\) 7.68141e15 0.254700
\(344\) −7.62548e15 −0.248106
\(345\) −6.72399e15 −0.214686
\(346\) 4.19022e15 0.131293
\(347\) 5.68681e16 1.74875 0.874374 0.485252i \(-0.161272\pi\)
0.874374 + 0.485252i \(0.161272\pi\)
\(348\) 1.00813e16 0.304266
\(349\) −1.79320e16 −0.531206 −0.265603 0.964083i \(-0.585571\pi\)
−0.265603 + 0.964083i \(0.585571\pi\)
\(350\) 7.98678e16 2.32236
\(351\) −2.06047e16 −0.588125
\(352\) −2.22985e16 −0.624809
\(353\) −1.38653e16 −0.381411 −0.190705 0.981647i \(-0.561077\pi\)
−0.190705 + 0.981647i \(0.561077\pi\)
\(354\) −4.82666e15 −0.130354
\(355\) 7.00456e16 1.85736
\(356\) 9.61416e16 2.50315
\(357\) −6.21611e15 −0.158919
\(358\) 1.34401e15 0.0337415
\(359\) 7.30117e16 1.80002 0.900012 0.435864i \(-0.143557\pi\)
0.900012 + 0.435864i \(0.143557\pi\)
\(360\) −5.63233e16 −1.36371
\(361\) −3.65813e16 −0.869885
\(362\) 9.00161e15 0.210239
\(363\) 4.43168e15 0.101666
\(364\) 1.76587e17 3.97923
\(365\) 6.76807e16 1.49817
\(366\) −1.22886e16 −0.267225
\(367\) −7.32278e16 −1.56440 −0.782198 0.623030i \(-0.785901\pi\)
−0.782198 + 0.623030i \(0.785901\pi\)
\(368\) 1.44545e15 0.0303383
\(369\) 1.99731e16 0.411883
\(370\) 1.71658e17 3.47819
\(371\) −4.37281e16 −0.870622
\(372\) 9.03473e15 0.176761
\(373\) 5.75065e16 1.10563 0.552814 0.833304i \(-0.313554\pi\)
0.552814 + 0.833304i \(0.313554\pi\)
\(374\) −3.80079e16 −0.718139
\(375\) 8.71785e14 0.0161885
\(376\) 1.64800e16 0.300771
\(377\) 1.20802e17 2.16698
\(378\) 3.92624e16 0.692278
\(379\) 1.37477e16 0.238272 0.119136 0.992878i \(-0.461987\pi\)
0.119136 + 0.992878i \(0.461987\pi\)
\(380\) 4.88324e16 0.831983
\(381\) −1.35013e16 −0.226133
\(382\) 1.10068e17 1.81239
\(383\) −1.01565e17 −1.64420 −0.822098 0.569345i \(-0.807197\pi\)
−0.822098 + 0.569345i \(0.807197\pi\)
\(384\) −1.61616e16 −0.257236
\(385\) −7.53080e16 −1.17855
\(386\) 1.44786e17 2.22797
\(387\) −1.64067e16 −0.248256
\(388\) −1.31298e17 −1.95367
\(389\) −3.11554e16 −0.455891 −0.227945 0.973674i \(-0.573201\pi\)
−0.227945 + 0.973674i \(0.573201\pi\)
\(390\) 4.80585e16 0.691593
\(391\) 4.77212e16 0.675402
\(392\) −5.66873e16 −0.789089
\(393\) 4.42552e15 0.0605916
\(394\) 8.53592e15 0.114954
\(395\) 5.17670e16 0.685760
\(396\) 7.29471e16 0.950581
\(397\) −1.26117e17 −1.61673 −0.808363 0.588684i \(-0.799646\pi\)
−0.808363 + 0.588684i \(0.799646\pi\)
\(398\) 1.32017e17 1.66491
\(399\) −6.31951e15 −0.0784079
\(400\) −2.87769e15 −0.0351281
\(401\) −2.07320e16 −0.249002 −0.124501 0.992219i \(-0.539733\pi\)
−0.124501 + 0.992219i \(0.539733\pi\)
\(402\) −2.22289e16 −0.262693
\(403\) 1.08261e17 1.25889
\(404\) 1.04278e17 1.19321
\(405\) −1.17849e17 −1.32699
\(406\) −2.30189e17 −2.55073
\(407\) −8.36529e16 −0.912258
\(408\) −1.07102e16 −0.114949
\(409\) −6.61620e16 −0.698887 −0.349443 0.936957i \(-0.613629\pi\)
−0.349443 + 0.936957i \(0.613629\pi\)
\(410\) −9.44189e16 −0.981667
\(411\) −6.75805e15 −0.0691591
\(412\) 1.78655e17 1.79963
\(413\) 6.78732e16 0.673012
\(414\) −1.48717e17 −1.45164
\(415\) 9.32489e16 0.896048
\(416\) −2.00104e17 −1.89299
\(417\) 2.61305e15 0.0243367
\(418\) −3.86401e16 −0.354318
\(419\) 9.29004e16 0.838739 0.419369 0.907816i \(-0.362251\pi\)
0.419369 + 0.907816i \(0.362251\pi\)
\(420\) −5.63984e16 −0.501356
\(421\) 1.35585e17 1.18681 0.593403 0.804906i \(-0.297784\pi\)
0.593403 + 0.804906i \(0.297784\pi\)
\(422\) −2.78717e17 −2.40233
\(423\) 3.54577e16 0.300952
\(424\) −7.53420e16 −0.629737
\(425\) −9.50065e16 −0.782034
\(426\) −4.15085e16 −0.336492
\(427\) 1.72805e17 1.37967
\(428\) −1.22193e16 −0.0960865
\(429\) −2.34200e16 −0.181390
\(430\) 7.75594e16 0.591684
\(431\) −2.01800e17 −1.51641 −0.758207 0.652014i \(-0.773924\pi\)
−0.758207 + 0.652014i \(0.773924\pi\)
\(432\) −1.41465e15 −0.0104714
\(433\) −9.34070e15 −0.0681095 −0.0340548 0.999420i \(-0.510842\pi\)
−0.0340548 + 0.999420i \(0.510842\pi\)
\(434\) −2.06292e17 −1.48183
\(435\) −3.85817e16 −0.273024
\(436\) 3.64645e17 2.54219
\(437\) 4.85150e16 0.333232
\(438\) −4.01071e16 −0.271419
\(439\) −1.03148e17 −0.687766 −0.343883 0.939012i \(-0.611742\pi\)
−0.343883 + 0.939012i \(0.611742\pi\)
\(440\) −1.29753e17 −0.852463
\(441\) −1.21966e17 −0.789566
\(442\) −3.41079e17 −2.17576
\(443\) −1.49111e17 −0.937314 −0.468657 0.883380i \(-0.655262\pi\)
−0.468657 + 0.883380i \(0.655262\pi\)
\(444\) −6.26480e16 −0.388077
\(445\) −3.67938e17 −2.24613
\(446\) 3.64223e17 2.19124
\(447\) −4.81061e15 −0.0285234
\(448\) 3.73738e17 2.18404
\(449\) −1.40368e17 −0.808475 −0.404237 0.914654i \(-0.632463\pi\)
−0.404237 + 0.914654i \(0.632463\pi\)
\(450\) 2.96075e17 1.68082
\(451\) 4.60124e16 0.257471
\(452\) −4.94119e16 −0.272541
\(453\) 6.30556e15 0.0342835
\(454\) −4.75411e16 −0.254804
\(455\) −6.75806e17 −3.57066
\(456\) −1.08883e16 −0.0567138
\(457\) 8.31704e16 0.427084 0.213542 0.976934i \(-0.431500\pi\)
0.213542 + 0.976934i \(0.431500\pi\)
\(458\) −1.60014e17 −0.810087
\(459\) −4.67045e16 −0.233118
\(460\) 4.32972e17 2.13076
\(461\) 2.31638e17 1.12397 0.561983 0.827149i \(-0.310039\pi\)
0.561983 + 0.827149i \(0.310039\pi\)
\(462\) 4.46270e16 0.213513
\(463\) −3.05029e17 −1.43901 −0.719507 0.694485i \(-0.755632\pi\)
−0.719507 + 0.694485i \(0.755632\pi\)
\(464\) 8.29387e15 0.0385825
\(465\) −3.45763e16 −0.158611
\(466\) 3.59786e17 1.62755
\(467\) −1.86370e17 −0.831410 −0.415705 0.909500i \(-0.636465\pi\)
−0.415705 + 0.909500i \(0.636465\pi\)
\(468\) 6.54620e17 2.87999
\(469\) 3.12585e17 1.35627
\(470\) −1.67619e17 −0.717279
\(471\) 5.41475e16 0.228529
\(472\) 1.16943e17 0.486802
\(473\) −3.77964e16 −0.155186
\(474\) −3.06768e16 −0.124237
\(475\) −9.65869e16 −0.385842
\(476\) 4.00269e17 1.57727
\(477\) −1.62103e17 −0.630117
\(478\) −1.92578e17 −0.738458
\(479\) 4.69474e17 1.77595 0.887975 0.459892i \(-0.152112\pi\)
0.887975 + 0.459892i \(0.152112\pi\)
\(480\) 6.39093e16 0.238504
\(481\) −7.50693e17 −2.76388
\(482\) −3.27813e17 −1.19075
\(483\) −5.60319e16 −0.200807
\(484\) −2.85365e17 −1.00904
\(485\) 5.02482e17 1.75307
\(486\) 2.19285e17 0.754870
\(487\) −1.69302e17 −0.575075 −0.287538 0.957769i \(-0.592837\pi\)
−0.287538 + 0.957769i \(0.592837\pi\)
\(488\) 2.97737e17 0.997939
\(489\) −3.39228e16 −0.112198
\(490\) 5.76572e17 1.88182
\(491\) 1.93030e17 0.621720 0.310860 0.950456i \(-0.399383\pi\)
0.310860 + 0.950456i \(0.399383\pi\)
\(492\) 3.44589e16 0.109529
\(493\) 2.73821e17 0.858936
\(494\) −3.46753e17 −1.07348
\(495\) −2.79172e17 −0.852978
\(496\) 7.43283e15 0.0224142
\(497\) 5.83699e17 1.73729
\(498\) −5.52587e16 −0.162334
\(499\) −2.97960e17 −0.863980 −0.431990 0.901878i \(-0.642188\pi\)
−0.431990 + 0.901878i \(0.642188\pi\)
\(500\) −5.61361e16 −0.160671
\(501\) −4.15120e16 −0.117281
\(502\) 3.45093e17 0.962414
\(503\) 4.06755e17 1.11980 0.559901 0.828560i \(-0.310839\pi\)
0.559901 + 0.828560i \(0.310839\pi\)
\(504\) −4.69349e17 −1.27555
\(505\) −3.99078e17 −1.07069
\(506\) −3.42602e17 −0.907428
\(507\) −1.48392e17 −0.388024
\(508\) 8.69379e17 2.24437
\(509\) 1.55951e17 0.397487 0.198744 0.980052i \(-0.436314\pi\)
0.198744 + 0.980052i \(0.436314\pi\)
\(510\) 1.08934e17 0.274130
\(511\) 5.63993e17 1.40132
\(512\) −2.67677e16 −0.0656685
\(513\) −4.74814e16 −0.115017
\(514\) −1.16973e18 −2.79787
\(515\) −6.83720e17 −1.61485
\(516\) −2.83059e16 −0.0660167
\(517\) 8.16846e16 0.188127
\(518\) 1.43045e18 3.25334
\(519\) 5.85251e15 0.0131448
\(520\) −1.16439e18 −2.58272
\(521\) −3.63157e16 −0.0795516 −0.0397758 0.999209i \(-0.512664\pi\)
−0.0397758 + 0.999209i \(0.512664\pi\)
\(522\) −8.53326e17 −1.84611
\(523\) 2.88190e17 0.615769 0.307884 0.951424i \(-0.400379\pi\)
0.307884 + 0.951424i \(0.400379\pi\)
\(524\) −2.84968e17 −0.601372
\(525\) 1.11552e17 0.232510
\(526\) 4.42514e17 0.911003
\(527\) 2.45394e17 0.498993
\(528\) −1.60794e15 −0.00322961
\(529\) −7.38784e16 −0.146574
\(530\) 7.66310e17 1.50180
\(531\) 2.51610e17 0.487095
\(532\) 4.06927e17 0.778199
\(533\) 4.12911e17 0.780062
\(534\) 2.18038e17 0.406924
\(535\) 4.67639e16 0.0862205
\(536\) 5.38574e17 0.981012
\(537\) 1.87719e15 0.00337813
\(538\) −1.36408e18 −2.42525
\(539\) −2.80976e17 −0.493563
\(540\) −4.23747e17 −0.735440
\(541\) −9.27419e17 −1.59035 −0.795177 0.606377i \(-0.792622\pi\)
−0.795177 + 0.606377i \(0.792622\pi\)
\(542\) −1.47338e18 −2.49643
\(543\) 1.25726e16 0.0210488
\(544\) −4.53575e17 −0.750336
\(545\) −1.39551e18 −2.28117
\(546\) 4.00478e17 0.646884
\(547\) 6.03525e17 0.963335 0.481668 0.876354i \(-0.340031\pi\)
0.481668 + 0.876354i \(0.340031\pi\)
\(548\) 4.35165e17 0.686405
\(549\) 6.40599e17 0.998541
\(550\) 6.82075e17 1.05069
\(551\) 2.78375e17 0.423785
\(552\) −9.65411e16 −0.145247
\(553\) 4.31382e17 0.641429
\(554\) 2.02973e18 2.98281
\(555\) 2.39757e17 0.348230
\(556\) −1.68260e17 −0.241542
\(557\) 1.13063e18 1.60421 0.802106 0.597182i \(-0.203713\pi\)
0.802106 + 0.597182i \(0.203713\pi\)
\(558\) −7.64737e17 −1.07248
\(559\) −3.39181e17 −0.470170
\(560\) −4.63987e16 −0.0635746
\(561\) −5.30859e16 −0.0718986
\(562\) 8.36366e17 1.11972
\(563\) −1.45239e17 −0.192212 −0.0961058 0.995371i \(-0.530639\pi\)
−0.0961058 + 0.995371i \(0.530639\pi\)
\(564\) 6.11739e16 0.0800299
\(565\) 1.89102e17 0.244557
\(566\) 1.54555e18 1.97595
\(567\) −9.82052e17 −1.24121
\(568\) 1.00569e18 1.25661
\(569\) 7.14874e17 0.883080 0.441540 0.897242i \(-0.354432\pi\)
0.441540 + 0.897242i \(0.354432\pi\)
\(570\) 1.10746e17 0.135251
\(571\) 6.34516e17 0.766139 0.383070 0.923720i \(-0.374867\pi\)
0.383070 + 0.923720i \(0.374867\pi\)
\(572\) 1.50806e18 1.80030
\(573\) 1.53733e17 0.181453
\(574\) −7.86806e17 −0.918206
\(575\) −8.56387e17 −0.988164
\(576\) 1.38547e18 1.58071
\(577\) −1.12169e17 −0.126540 −0.0632702 0.997996i \(-0.520153\pi\)
−0.0632702 + 0.997996i \(0.520153\pi\)
\(578\) 6.73280e17 0.751043
\(579\) 2.02224e17 0.223060
\(580\) 2.48436e18 2.70977
\(581\) 7.77056e17 0.838122
\(582\) −2.97768e17 −0.317598
\(583\) −3.73440e17 −0.393890
\(584\) 9.71740e17 1.01360
\(585\) −2.50526e18 −2.58428
\(586\) 3.06789e18 3.12972
\(587\) −8.35807e17 −0.843254 −0.421627 0.906769i \(-0.638541\pi\)
−0.421627 + 0.906769i \(0.638541\pi\)
\(588\) −2.10424e17 −0.209963
\(589\) 2.49476e17 0.246195
\(590\) −1.18944e18 −1.16093
\(591\) 1.19222e16 0.0115090
\(592\) −5.15402e16 −0.0492102
\(593\) 3.24648e16 0.0306589 0.0153295 0.999882i \(-0.495120\pi\)
0.0153295 + 0.999882i \(0.495120\pi\)
\(594\) 3.35303e17 0.313203
\(595\) −1.53185e18 −1.41532
\(596\) 3.09765e17 0.283095
\(597\) 1.84389e17 0.166687
\(598\) −3.07448e18 −2.74925
\(599\) 2.70986e17 0.239703 0.119851 0.992792i \(-0.461758\pi\)
0.119851 + 0.992792i \(0.461758\pi\)
\(600\) 1.92200e17 0.168179
\(601\) 1.06437e18 0.921320 0.460660 0.887577i \(-0.347613\pi\)
0.460660 + 0.887577i \(0.347613\pi\)
\(602\) 6.46313e17 0.553434
\(603\) 1.15878e18 0.981605
\(604\) −4.06028e17 −0.340264
\(605\) 1.09211e18 0.905430
\(606\) 2.36491e17 0.193973
\(607\) −1.95225e18 −1.58420 −0.792098 0.610394i \(-0.791011\pi\)
−0.792098 + 0.610394i \(0.791011\pi\)
\(608\) −4.61120e17 −0.370203
\(609\) −3.21507e17 −0.255374
\(610\) −3.02831e18 −2.37989
\(611\) 7.33029e17 0.569972
\(612\) 1.48382e18 1.14156
\(613\) 9.41311e17 0.716540 0.358270 0.933618i \(-0.383367\pi\)
0.358270 + 0.933618i \(0.383367\pi\)
\(614\) 2.23281e18 1.68173
\(615\) −1.31876e17 −0.0982825
\(616\) −1.08125e18 −0.797355
\(617\) 6.07523e17 0.443312 0.221656 0.975125i \(-0.428854\pi\)
0.221656 + 0.975125i \(0.428854\pi\)
\(618\) 4.05168e17 0.292557
\(619\) −2.65867e18 −1.89966 −0.949828 0.312774i \(-0.898742\pi\)
−0.949828 + 0.312774i \(0.898742\pi\)
\(620\) 2.22644e18 1.57422
\(621\) −4.20993e17 −0.294564
\(622\) −2.63541e18 −1.82478
\(623\) −3.06608e18 −2.10093
\(624\) −1.44295e16 −0.00978479
\(625\) −1.37908e18 −0.925487
\(626\) 3.70221e17 0.245883
\(627\) −5.39690e16 −0.0354736
\(628\) −3.48667e18 −2.26816
\(629\) −1.70159e18 −1.09553
\(630\) 4.77380e18 3.04194
\(631\) −4.04336e17 −0.255006 −0.127503 0.991838i \(-0.540696\pi\)
−0.127503 + 0.991838i \(0.540696\pi\)
\(632\) 7.43256e17 0.463957
\(633\) −3.89287e17 −0.240517
\(634\) 5.66319e17 0.346323
\(635\) −3.32715e18 −2.01392
\(636\) −2.79670e17 −0.167562
\(637\) −2.52145e18 −1.49535
\(638\) −1.96583e18 −1.15401
\(639\) 2.16381e18 1.25737
\(640\) −3.98274e18 −2.29093
\(641\) 7.36613e17 0.419433 0.209716 0.977762i \(-0.432746\pi\)
0.209716 + 0.977762i \(0.432746\pi\)
\(642\) −2.77119e16 −0.0156203
\(643\) −3.64324e17 −0.203290 −0.101645 0.994821i \(-0.532411\pi\)
−0.101645 + 0.994821i \(0.532411\pi\)
\(644\) 3.60801e18 1.99301
\(645\) 1.08328e17 0.0592382
\(646\) −7.85982e17 −0.425502
\(647\) 3.67191e17 0.196795 0.0983974 0.995147i \(-0.468628\pi\)
0.0983974 + 0.995147i \(0.468628\pi\)
\(648\) −1.69204e18 −0.897788
\(649\) 5.79640e17 0.304487
\(650\) 6.12087e18 3.18329
\(651\) −2.88129e17 −0.148358
\(652\) 2.18436e18 1.11356
\(653\) 1.48824e18 0.751168 0.375584 0.926788i \(-0.377442\pi\)
0.375584 + 0.926788i \(0.377442\pi\)
\(654\) 8.26972e17 0.413272
\(655\) 1.09059e18 0.539625
\(656\) 2.83492e16 0.0138888
\(657\) 2.09076e18 1.01421
\(658\) −1.39679e18 −0.670910
\(659\) 1.65430e18 0.786792 0.393396 0.919369i \(-0.371300\pi\)
0.393396 + 0.919369i \(0.371300\pi\)
\(660\) −4.81645e17 −0.226825
\(661\) −3.63502e18 −1.69511 −0.847553 0.530710i \(-0.821925\pi\)
−0.847553 + 0.530710i \(0.821925\pi\)
\(662\) −3.12829e17 −0.144454
\(663\) −4.76387e17 −0.217832
\(664\) 1.33884e18 0.606229
\(665\) −1.55733e18 −0.698295
\(666\) 5.30278e18 2.35462
\(667\) 2.46821e18 1.08534
\(668\) 2.67304e18 1.16402
\(669\) 5.08712e17 0.219383
\(670\) −5.47789e18 −2.33952
\(671\) 1.47576e18 0.624195
\(672\) 5.32565e17 0.223086
\(673\) −4.58195e18 −1.90087 −0.950435 0.310922i \(-0.899362\pi\)
−0.950435 + 0.310922i \(0.899362\pi\)
\(674\) 6.80106e18 2.79439
\(675\) 8.38141e17 0.341069
\(676\) 9.55528e18 3.85115
\(677\) 1.72187e17 0.0687345 0.0343672 0.999409i \(-0.489058\pi\)
0.0343672 + 0.999409i \(0.489058\pi\)
\(678\) −1.12060e17 −0.0443056
\(679\) 4.18725e18 1.63974
\(680\) −2.63932e18 −1.02373
\(681\) −6.64010e16 −0.0255105
\(682\) −1.76174e18 −0.670415
\(683\) 4.78259e17 0.180272 0.0901361 0.995929i \(-0.471270\pi\)
0.0901361 + 0.995929i \(0.471270\pi\)
\(684\) 1.50850e18 0.563225
\(685\) −1.66540e18 −0.615926
\(686\) −1.12174e18 −0.410948
\(687\) −2.23492e17 −0.0811043
\(688\) −2.32871e16 −0.00837126
\(689\) −3.35121e18 −1.19337
\(690\) 9.81928e17 0.346386
\(691\) −4.75450e18 −1.66149 −0.830745 0.556654i \(-0.812085\pi\)
−0.830745 + 0.556654i \(0.812085\pi\)
\(692\) −3.76856e17 −0.130462
\(693\) −2.32638e18 −0.797836
\(694\) −8.30466e18 −2.82153
\(695\) 6.43937e17 0.216741
\(696\) −5.53945e17 −0.184717
\(697\) 9.35942e17 0.309198
\(698\) 2.61867e18 0.857079
\(699\) 5.02516e17 0.162948
\(700\) −7.18307e18 −2.30767
\(701\) 3.59960e18 1.14574 0.572872 0.819645i \(-0.305829\pi\)
0.572872 + 0.819645i \(0.305829\pi\)
\(702\) 3.00897e18 0.948915
\(703\) −1.72990e18 −0.540518
\(704\) 3.19174e18 0.988111
\(705\) −2.34115e17 −0.0718126
\(706\) 2.02480e18 0.615390
\(707\) −3.32557e18 −1.00147
\(708\) 4.34095e17 0.129529
\(709\) 2.92359e18 0.864401 0.432200 0.901778i \(-0.357737\pi\)
0.432200 + 0.901778i \(0.357737\pi\)
\(710\) −1.02290e19 −2.99678
\(711\) 1.59916e18 0.464237
\(712\) −5.28275e18 −1.51964
\(713\) 2.21197e18 0.630518
\(714\) 9.07761e17 0.256409
\(715\) −5.77142e18 −1.61545
\(716\) −1.20876e17 −0.0335280
\(717\) −2.68975e17 −0.0739329
\(718\) −1.06622e19 −2.90427
\(719\) −1.30924e18 −0.353411 −0.176705 0.984264i \(-0.556544\pi\)
−0.176705 + 0.984264i \(0.556544\pi\)
\(720\) −1.72003e17 −0.0460124
\(721\) −5.69753e18 −1.51045
\(722\) 5.34209e18 1.40352
\(723\) −4.57859e17 −0.119216
\(724\) −8.09577e17 −0.208909
\(725\) −4.91388e18 −1.25669
\(726\) −6.47174e17 −0.164034
\(727\) 6.43459e18 1.61639 0.808197 0.588913i \(-0.200444\pi\)
0.808197 + 0.588913i \(0.200444\pi\)
\(728\) −9.70303e18 −2.41576
\(729\) −3.43180e18 −0.846823
\(730\) −9.88366e18 −2.41724
\(731\) −7.68820e17 −0.186364
\(732\) 1.10520e18 0.265534
\(733\) 3.52248e18 0.838827 0.419413 0.907795i \(-0.362236\pi\)
0.419413 + 0.907795i \(0.362236\pi\)
\(734\) 1.06937e19 2.52409
\(735\) 8.05302e17 0.188404
\(736\) −4.08851e18 −0.948112
\(737\) 2.66950e18 0.613607
\(738\) −2.91674e18 −0.664556
\(739\) 7.12146e18 1.60835 0.804175 0.594393i \(-0.202608\pi\)
0.804175 + 0.594393i \(0.202608\pi\)
\(740\) −1.54384e19 −3.45619
\(741\) −4.84312e17 −0.107475
\(742\) 6.38577e18 1.40471
\(743\) 3.83815e18 0.836940 0.418470 0.908231i \(-0.362567\pi\)
0.418470 + 0.908231i \(0.362567\pi\)
\(744\) −4.96437e17 −0.107310
\(745\) −1.18548e18 −0.254027
\(746\) −8.39788e18 −1.78389
\(747\) 2.88060e18 0.606595
\(748\) 3.41831e18 0.713595
\(749\) 3.89689e17 0.0806467
\(750\) −1.27310e17 −0.0261195
\(751\) 4.88087e18 0.992746 0.496373 0.868109i \(-0.334665\pi\)
0.496373 + 0.868109i \(0.334665\pi\)
\(752\) 5.03275e16 0.0101482
\(753\) 4.81994e17 0.0963550
\(754\) −1.76411e19 −3.49633
\(755\) 1.55389e18 0.305326
\(756\) −3.53114e18 −0.687897
\(757\) 5.87358e18 1.13444 0.567218 0.823568i \(-0.308020\pi\)
0.567218 + 0.823568i \(0.308020\pi\)
\(758\) −2.00762e18 −0.384443
\(759\) −4.78515e17 −0.0908499
\(760\) −2.68322e18 −0.505090
\(761\) −2.00830e18 −0.374825 −0.187413 0.982281i \(-0.560010\pi\)
−0.187413 + 0.982281i \(0.560010\pi\)
\(762\) 1.97165e18 0.364856
\(763\) −1.16290e19 −2.13370
\(764\) −9.89922e18 −1.80092
\(765\) −5.67865e18 −1.02434
\(766\) 1.48320e19 2.65284
\(767\) 5.20163e18 0.922507
\(768\) 8.69227e17 0.152857
\(769\) −6.28602e17 −0.109611 −0.0548056 0.998497i \(-0.517454\pi\)
−0.0548056 + 0.998497i \(0.517454\pi\)
\(770\) 1.09975e19 1.90153
\(771\) −1.63378e18 −0.280117
\(772\) −1.30216e19 −2.21387
\(773\) −2.08070e18 −0.350786 −0.175393 0.984498i \(-0.556120\pi\)
−0.175393 + 0.984498i \(0.556120\pi\)
\(774\) 2.39593e18 0.400550
\(775\) −4.40374e18 −0.730064
\(776\) 7.21450e18 1.18605
\(777\) 1.99792e18 0.325718
\(778\) 4.54974e18 0.735561
\(779\) 9.51511e17 0.152553
\(780\) −4.32224e18 −0.687216
\(781\) 4.98482e18 0.785991
\(782\) −6.96890e18 −1.08973
\(783\) −2.41563e18 −0.374609
\(784\) −1.73115e17 −0.0266244
\(785\) 1.33436e19 2.03527
\(786\) −6.46274e17 −0.0977620
\(787\) −1.31588e19 −1.97415 −0.987075 0.160257i \(-0.948768\pi\)
−0.987075 + 0.160257i \(0.948768\pi\)
\(788\) −7.67694e17 −0.114227
\(789\) 6.18063e17 0.0912078
\(790\) −7.55973e18 −1.10645
\(791\) 1.57581e18 0.228748
\(792\) −4.00827e18 −0.577089
\(793\) 1.32433e19 1.89113
\(794\) 1.84174e19 2.60852
\(795\) 1.07031e18 0.150357
\(796\) −1.18732e19 −1.65437
\(797\) −5.33017e18 −0.736651 −0.368325 0.929697i \(-0.620069\pi\)
−0.368325 + 0.929697i \(0.620069\pi\)
\(798\) 9.22861e17 0.126508
\(799\) 1.66155e18 0.225923
\(800\) 8.13968e18 1.09780
\(801\) −1.13662e19 −1.52056
\(802\) 3.02757e18 0.401754
\(803\) 4.81653e18 0.633991
\(804\) 1.99920e18 0.261030
\(805\) −1.38080e19 −1.78837
\(806\) −1.58097e19 −2.03117
\(807\) −1.90522e18 −0.242811
\(808\) −5.72985e18 −0.724384
\(809\) −1.21598e19 −1.52496 −0.762482 0.647010i \(-0.776019\pi\)
−0.762482 + 0.647010i \(0.776019\pi\)
\(810\) 1.72099e19 2.14105
\(811\) 1.03518e18 0.127755 0.0638776 0.997958i \(-0.479653\pi\)
0.0638776 + 0.997958i \(0.479653\pi\)
\(812\) 2.07025e19 2.53459
\(813\) −2.05788e18 −0.249938
\(814\) 1.22161e19 1.47189
\(815\) −8.35964e18 −0.999224
\(816\) −3.27073e16 −0.00387845
\(817\) −7.81609e17 −0.0919488
\(818\) 9.66187e18 1.12763
\(819\) −2.08767e19 −2.41722
\(820\) 8.49175e18 0.975455
\(821\) 5.96819e18 0.680162 0.340081 0.940396i \(-0.389546\pi\)
0.340081 + 0.940396i \(0.389546\pi\)
\(822\) 9.86902e17 0.111585
\(823\) −5.87796e18 −0.659367 −0.329684 0.944091i \(-0.606942\pi\)
−0.329684 + 0.944091i \(0.606942\pi\)
\(824\) −9.81666e18 −1.09254
\(825\) 9.52660e17 0.105193
\(826\) −9.91176e18 −1.08588
\(827\) −1.22284e19 −1.32918 −0.664592 0.747206i \(-0.731395\pi\)
−0.664592 + 0.747206i \(0.731395\pi\)
\(828\) 1.33751e19 1.44245
\(829\) 4.06181e18 0.434626 0.217313 0.976102i \(-0.430271\pi\)
0.217313 + 0.976102i \(0.430271\pi\)
\(830\) −1.36175e19 −1.44574
\(831\) 2.83494e18 0.298633
\(832\) 2.86424e19 2.99369
\(833\) −5.71535e18 −0.592721
\(834\) −3.81592e17 −0.0392663
\(835\) −1.02299e19 −1.04450
\(836\) 3.47518e18 0.352076
\(837\) −2.16484e18 −0.217626
\(838\) −1.35666e19 −1.35327
\(839\) −5.90693e18 −0.584667 −0.292334 0.956316i \(-0.594432\pi\)
−0.292334 + 0.956316i \(0.594432\pi\)
\(840\) 3.09896e18 0.304369
\(841\) 3.90178e18 0.380267
\(842\) −1.98000e19 −1.91486
\(843\) 1.16816e18 0.112104
\(844\) 2.50670e19 2.38713
\(845\) −3.65685e19 −3.45572
\(846\) −5.17801e18 −0.485574
\(847\) 9.10066e18 0.846898
\(848\) −2.30084e17 −0.0212477
\(849\) 2.15868e18 0.197828
\(850\) 1.38741e19 1.26178
\(851\) −1.53381e19 −1.38430
\(852\) 3.73315e18 0.334363
\(853\) −1.16071e19 −1.03171 −0.515854 0.856677i \(-0.672525\pi\)
−0.515854 + 0.856677i \(0.672525\pi\)
\(854\) −2.52353e19 −2.22604
\(855\) −5.77312e18 −0.505394
\(856\) 6.71422e17 0.0583332
\(857\) −1.09084e19 −0.940560 −0.470280 0.882517i \(-0.655847\pi\)
−0.470280 + 0.882517i \(0.655847\pi\)
\(858\) 3.42010e18 0.292666
\(859\) 1.05481e19 0.895814 0.447907 0.894080i \(-0.352170\pi\)
0.447907 + 0.894080i \(0.352170\pi\)
\(860\) −6.97546e18 −0.587940
\(861\) −1.09894e18 −0.0919290
\(862\) 2.94695e19 2.44667
\(863\) −2.01877e18 −0.166348 −0.0831739 0.996535i \(-0.526506\pi\)
−0.0831739 + 0.996535i \(0.526506\pi\)
\(864\) 4.00140e18 0.327245
\(865\) 1.44224e18 0.117067
\(866\) 1.36406e18 0.109892
\(867\) 9.40375e17 0.0751929
\(868\) 1.85532e19 1.47245
\(869\) 3.68402e18 0.290197
\(870\) 5.63423e18 0.440513
\(871\) 2.39558e19 1.85906
\(872\) −2.00364e19 −1.54334
\(873\) 1.55224e19 1.18677
\(874\) −7.08483e18 −0.537656
\(875\) 1.79025e18 0.134853
\(876\) 3.60711e18 0.269701
\(877\) 1.67018e19 1.23956 0.619779 0.784776i \(-0.287222\pi\)
0.619779 + 0.784776i \(0.287222\pi\)
\(878\) 1.50631e19 1.10968
\(879\) 4.28494e18 0.313341
\(880\) −3.96248e17 −0.0287627
\(881\) 2.08672e18 0.150356 0.0751781 0.997170i \(-0.476047\pi\)
0.0751781 + 0.997170i \(0.476047\pi\)
\(882\) 1.78112e19 1.27393
\(883\) 1.41111e19 1.00188 0.500941 0.865482i \(-0.332987\pi\)
0.500941 + 0.865482i \(0.332987\pi\)
\(884\) 3.06756e19 2.16199
\(885\) −1.66130e18 −0.116230
\(886\) 2.17752e19 1.51232
\(887\) 2.77985e19 1.91654 0.958269 0.285868i \(-0.0922819\pi\)
0.958269 + 0.285868i \(0.0922819\pi\)
\(888\) 3.44236e18 0.235598
\(889\) −2.77256e19 −1.88373
\(890\) 5.37314e19 3.62404
\(891\) −8.38677e18 −0.561552
\(892\) −3.27571e19 −2.17738
\(893\) 1.68919e18 0.111467
\(894\) 7.02510e17 0.0460213
\(895\) 4.62600e17 0.0300854
\(896\) −3.31887e19 −2.14283
\(897\) −4.29415e18 −0.275249
\(898\) 2.04984e19 1.30444
\(899\) 1.26921e19 0.801856
\(900\) −2.66281e19 −1.67018
\(901\) −7.59617e18 −0.473024
\(902\) −6.71936e18 −0.415418
\(903\) 9.02711e17 0.0554087
\(904\) 2.71507e18 0.165457
\(905\) 3.09829e18 0.187459
\(906\) −9.20823e17 −0.0553150
\(907\) −5.92017e18 −0.353091 −0.176546 0.984292i \(-0.556492\pi\)
−0.176546 + 0.984292i \(0.556492\pi\)
\(908\) 4.27570e18 0.253192
\(909\) −1.23281e19 −0.724822
\(910\) 9.86904e19 5.76111
\(911\) 2.45208e19 1.42124 0.710618 0.703578i \(-0.248416\pi\)
0.710618 + 0.703578i \(0.248416\pi\)
\(912\) −3.32513e16 −0.00191356
\(913\) 6.63610e18 0.379186
\(914\) −1.21457e19 −0.689083
\(915\) −4.22966e18 −0.238270
\(916\) 1.43911e19 0.804961
\(917\) 9.08800e18 0.504740
\(918\) 6.82042e18 0.376127
\(919\) −1.23801e19 −0.677915 −0.338957 0.940802i \(-0.610074\pi\)
−0.338957 + 0.940802i \(0.610074\pi\)
\(920\) −2.37908e19 −1.29356
\(921\) 3.11858e18 0.168372
\(922\) −3.38269e19 −1.81347
\(923\) 4.47333e19 2.38133
\(924\) −4.01362e18 −0.212162
\(925\) 3.05361e19 1.60285
\(926\) 4.45445e19 2.32179
\(927\) −2.11211e19 −1.09320
\(928\) −2.34596e19 −1.20575
\(929\) 1.13560e19 0.579594 0.289797 0.957088i \(-0.406412\pi\)
0.289797 + 0.957088i \(0.406412\pi\)
\(930\) 5.04930e18 0.255913
\(931\) −5.81043e18 −0.292439
\(932\) −3.23580e19 −1.61726
\(933\) −3.68090e18 −0.182694
\(934\) 2.72162e19 1.34145
\(935\) −1.30820e19 −0.640324
\(936\) −3.59698e19 −1.74842
\(937\) 1.75029e18 0.0844896 0.0422448 0.999107i \(-0.486549\pi\)
0.0422448 + 0.999107i \(0.486549\pi\)
\(938\) −4.56480e19 −2.18828
\(939\) 5.17091e17 0.0246173
\(940\) 1.50752e19 0.712740
\(941\) −2.26832e19 −1.06505 −0.532527 0.846413i \(-0.678757\pi\)
−0.532527 + 0.846413i \(0.678757\pi\)
\(942\) −7.90735e18 −0.368723
\(943\) 8.43656e18 0.390697
\(944\) 3.57128e17 0.0164250
\(945\) 1.35138e19 0.617265
\(946\) 5.51955e18 0.250387
\(947\) 1.76557e19 0.795443 0.397722 0.917506i \(-0.369801\pi\)
0.397722 + 0.917506i \(0.369801\pi\)
\(948\) 2.75898e18 0.123451
\(949\) 4.32230e19 1.92081
\(950\) 1.41049e19 0.622541
\(951\) 7.90983e17 0.0346732
\(952\) −2.19938e19 −0.957547
\(953\) 4.39762e19 1.90158 0.950788 0.309842i \(-0.100276\pi\)
0.950788 + 0.309842i \(0.100276\pi\)
\(954\) 2.36725e19 1.01667
\(955\) 3.78848e19 1.61600
\(956\) 1.73199e19 0.733785
\(957\) −2.74568e18 −0.115537
\(958\) −6.85590e19 −2.86542
\(959\) −1.38780e19 −0.576110
\(960\) −9.14782e18 −0.377185
\(961\) −1.30431e19 −0.534168
\(962\) 1.09626e20 4.45941
\(963\) 1.44460e18 0.0583685
\(964\) 2.94825e19 1.18322
\(965\) 4.98343e19 1.98656
\(966\) 8.18254e18 0.323994
\(967\) 2.96455e19 1.16597 0.582983 0.812484i \(-0.301885\pi\)
0.582983 + 0.812484i \(0.301885\pi\)
\(968\) 1.56801e19 0.612576
\(969\) −1.09779e18 −0.0426004
\(970\) −7.33793e19 −2.82851
\(971\) 2.48779e19 0.952553 0.476276 0.879296i \(-0.341986\pi\)
0.476276 + 0.879296i \(0.341986\pi\)
\(972\) −1.97218e19 −0.750094
\(973\) 5.36601e18 0.202730
\(974\) 2.47238e19 0.927861
\(975\) 8.54907e18 0.318705
\(976\) 9.09246e17 0.0336711
\(977\) −1.58078e19 −0.581510 −0.290755 0.956798i \(-0.593906\pi\)
−0.290755 + 0.956798i \(0.593906\pi\)
\(978\) 4.95386e18 0.181026
\(979\) −2.61845e19 −0.950509
\(980\) −5.18551e19 −1.86992
\(981\) −4.31095e19 −1.54427
\(982\) −2.81889e19 −1.00312
\(983\) 3.22371e19 1.13962 0.569808 0.821778i \(-0.307017\pi\)
0.569808 + 0.821778i \(0.307017\pi\)
\(984\) −1.89343e18 −0.0664939
\(985\) 2.93800e18 0.102498
\(986\) −3.99870e19 −1.38586
\(987\) −1.95091e18 −0.0671702
\(988\) 3.11859e19 1.06669
\(989\) −6.93013e18 −0.235486
\(990\) 4.07685e19 1.37624
\(991\) 5.60470e18 0.187963 0.0939817 0.995574i \(-0.470040\pi\)
0.0939817 + 0.995574i \(0.470040\pi\)
\(992\) −2.10241e19 −0.700473
\(993\) −4.36931e17 −0.0144625
\(994\) −8.52397e19 −2.80305
\(995\) 4.54394e19 1.48451
\(996\) 4.96980e18 0.161307
\(997\) −3.36491e19 −1.08506 −0.542531 0.840036i \(-0.682534\pi\)
−0.542531 + 0.840036i \(0.682534\pi\)
\(998\) 4.35121e19 1.39400
\(999\) 1.50113e19 0.477797
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.14.a.a.1.13 104
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.14.a.a.1.13 104 1.1 even 1 trivial