Properties

Label 197.14.a.b.1.1
Level $197$
Weight $14$
Character 197.1
Self dual yes
Analytic conductor $211.245$
Analytic rank $0$
Dimension $109$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,14,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(211.244930035\)
Analytic rank: \(0\)
Dimension: \(109\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-179.919 q^{2} +949.600 q^{3} +24179.0 q^{4} -44809.9 q^{5} -170851. q^{6} +555727. q^{7} -2.87636e6 q^{8} -692583. q^{9} +8.06216e6 q^{10} -2.55797e6 q^{11} +2.29603e7 q^{12} -2.39165e7 q^{13} -9.99861e7 q^{14} -4.25515e7 q^{15} +3.19439e8 q^{16} -3.92961e7 q^{17} +1.24609e8 q^{18} -2.10089e8 q^{19} -1.08346e9 q^{20} +5.27719e8 q^{21} +4.60229e8 q^{22} -5.41937e8 q^{23} -2.73139e9 q^{24} +7.87221e8 q^{25} +4.30304e9 q^{26} -2.17165e9 q^{27} +1.34369e10 q^{28} -3.63889e9 q^{29} +7.65583e9 q^{30} -5.70814e9 q^{31} -3.39101e10 q^{32} -2.42905e9 q^{33} +7.07012e9 q^{34} -2.49021e10 q^{35} -1.67459e10 q^{36} -5.77354e9 q^{37} +3.77991e10 q^{38} -2.27111e10 q^{39} +1.28889e11 q^{40} -5.15758e10 q^{41} -9.49468e10 q^{42} -2.92164e10 q^{43} -6.18491e10 q^{44} +3.10345e10 q^{45} +9.75050e10 q^{46} -7.37675e10 q^{47} +3.03339e11 q^{48} +2.11944e11 q^{49} -1.41636e11 q^{50} -3.73155e10 q^{51} -5.78277e11 q^{52} -2.11878e11 q^{53} +3.90721e11 q^{54} +1.14622e11 q^{55} -1.59847e12 q^{56} -1.99501e11 q^{57} +6.54706e11 q^{58} +3.58741e11 q^{59} -1.02885e12 q^{60} +5.12315e10 q^{61} +1.02700e12 q^{62} -3.84887e11 q^{63} +3.48424e12 q^{64} +1.07170e12 q^{65} +4.37033e11 q^{66} +1.03738e12 q^{67} -9.50138e11 q^{68} -5.14624e11 q^{69} +4.48036e12 q^{70} +1.71362e12 q^{71} +1.99212e12 q^{72} +8.16173e11 q^{73} +1.03877e12 q^{74} +7.47545e11 q^{75} -5.07974e12 q^{76} -1.42154e12 q^{77} +4.08617e12 q^{78} -2.72383e12 q^{79} -1.43140e13 q^{80} -9.57995e11 q^{81} +9.27947e12 q^{82} +1.23717e12 q^{83} +1.27597e13 q^{84} +1.76085e12 q^{85} +5.25659e12 q^{86} -3.45549e12 q^{87} +7.35765e12 q^{88} -2.00795e12 q^{89} -5.58371e12 q^{90} -1.32911e13 q^{91} -1.31035e13 q^{92} -5.42045e12 q^{93} +1.32722e13 q^{94} +9.41407e12 q^{95} -3.22010e13 q^{96} +2.76413e12 q^{97} -3.81328e13 q^{98} +1.77161e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 109 q + 192 q^{2} + 8018 q^{3} + 471040 q^{4} + 88496 q^{5} + 383232 q^{6} + 1680731 q^{7} + 1820859 q^{8} + 59521391 q^{9} + 16373653 q^{10} + 21199298 q^{11} + 63225856 q^{12} + 59695238 q^{13} + 37888529 q^{14}+ \cdots + 12084396239183 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −179.919 −1.98785 −0.993923 0.110076i \(-0.964890\pi\)
−0.993923 + 0.110076i \(0.964890\pi\)
\(3\) 949.600 0.752060 0.376030 0.926607i \(-0.377289\pi\)
0.376030 + 0.926607i \(0.377289\pi\)
\(4\) 24179.0 2.95153
\(5\) −44809.9 −1.28253 −0.641267 0.767318i \(-0.721591\pi\)
−0.641267 + 0.767318i \(0.721591\pi\)
\(6\) −170851. −1.49498
\(7\) 555727. 1.78535 0.892677 0.450696i \(-0.148824\pi\)
0.892677 + 0.450696i \(0.148824\pi\)
\(8\) −2.87636e6 −3.87935
\(9\) −692583. −0.434405
\(10\) 8.06216e6 2.54948
\(11\) −2.55797e6 −0.435355 −0.217677 0.976021i \(-0.569848\pi\)
−0.217677 + 0.976021i \(0.569848\pi\)
\(12\) 2.29603e7 2.21973
\(13\) −2.39165e7 −1.37425 −0.687126 0.726538i \(-0.741128\pi\)
−0.687126 + 0.726538i \(0.741128\pi\)
\(14\) −9.99861e7 −3.54901
\(15\) −4.25515e7 −0.964542
\(16\) 3.19439e8 4.76001
\(17\) −3.92961e7 −0.394849 −0.197425 0.980318i \(-0.563258\pi\)
−0.197425 + 0.980318i \(0.563258\pi\)
\(18\) 1.24609e8 0.863531
\(19\) −2.10089e8 −1.02448 −0.512242 0.858841i \(-0.671185\pi\)
−0.512242 + 0.858841i \(0.671185\pi\)
\(20\) −1.08346e9 −3.78544
\(21\) 5.27719e8 1.34269
\(22\) 4.60229e8 0.865418
\(23\) −5.41937e8 −0.763340 −0.381670 0.924299i \(-0.624651\pi\)
−0.381670 + 0.924299i \(0.624651\pi\)
\(24\) −2.73139e9 −2.91750
\(25\) 7.87221e8 0.644892
\(26\) 4.30304e9 2.73180
\(27\) −2.17165e9 −1.07876
\(28\) 1.34369e10 5.26953
\(29\) −3.63889e9 −1.13601 −0.568004 0.823026i \(-0.692284\pi\)
−0.568004 + 0.823026i \(0.692284\pi\)
\(30\) 7.65583e9 1.91736
\(31\) −5.70814e9 −1.15516 −0.577582 0.816333i \(-0.696004\pi\)
−0.577582 + 0.816333i \(0.696004\pi\)
\(32\) −3.39101e10 −5.58283
\(33\) −2.42905e9 −0.327413
\(34\) 7.07012e9 0.784899
\(35\) −2.49021e10 −2.28978
\(36\) −1.67459e10 −1.28216
\(37\) −5.77354e9 −0.369940 −0.184970 0.982744i \(-0.559219\pi\)
−0.184970 + 0.982744i \(0.559219\pi\)
\(38\) 3.77991e10 2.03652
\(39\) −2.27111e10 −1.03352
\(40\) 1.28889e11 4.97539
\(41\) −5.15758e10 −1.69571 −0.847853 0.530231i \(-0.822105\pi\)
−0.847853 + 0.530231i \(0.822105\pi\)
\(42\) −9.49468e10 −2.66907
\(43\) −2.92164e10 −0.704825 −0.352412 0.935845i \(-0.614639\pi\)
−0.352412 + 0.935845i \(0.614639\pi\)
\(44\) −6.18491e10 −1.28496
\(45\) 3.10345e10 0.557139
\(46\) 9.75050e10 1.51740
\(47\) −7.37675e10 −0.998226 −0.499113 0.866537i \(-0.666341\pi\)
−0.499113 + 0.866537i \(0.666341\pi\)
\(48\) 3.03339e11 3.57982
\(49\) 2.11944e11 2.18749
\(50\) −1.41636e11 −1.28195
\(51\) −3.73155e10 −0.296950
\(52\) −5.78277e11 −4.05615
\(53\) −2.11878e11 −1.31309 −0.656544 0.754288i \(-0.727982\pi\)
−0.656544 + 0.754288i \(0.727982\pi\)
\(54\) 3.90721e11 2.14441
\(55\) 1.14622e11 0.558357
\(56\) −1.59847e12 −6.92601
\(57\) −1.99501e11 −0.770474
\(58\) 6.54706e11 2.25821
\(59\) 3.58741e11 1.10724 0.553621 0.832768i \(-0.313245\pi\)
0.553621 + 0.832768i \(0.313245\pi\)
\(60\) −1.02885e12 −2.84688
\(61\) 5.12315e10 0.127319 0.0636595 0.997972i \(-0.479723\pi\)
0.0636595 + 0.997972i \(0.479723\pi\)
\(62\) 1.02700e12 2.29629
\(63\) −3.84887e11 −0.775568
\(64\) 3.48424e12 6.33779
\(65\) 1.07170e12 1.76252
\(66\) 4.37033e11 0.650847
\(67\) 1.03738e12 1.40105 0.700525 0.713628i \(-0.252949\pi\)
0.700525 + 0.713628i \(0.252949\pi\)
\(68\) −9.50138e11 −1.16541
\(69\) −5.14624e11 −0.574078
\(70\) 4.48036e12 4.55172
\(71\) 1.71362e12 1.58758 0.793791 0.608191i \(-0.208105\pi\)
0.793791 + 0.608191i \(0.208105\pi\)
\(72\) 1.99212e12 1.68521
\(73\) 8.16173e11 0.631224 0.315612 0.948888i \(-0.397790\pi\)
0.315612 + 0.948888i \(0.397790\pi\)
\(74\) 1.03877e12 0.735384
\(75\) 7.47545e11 0.484997
\(76\) −5.07974e12 −3.02380
\(77\) −1.42154e12 −0.777263
\(78\) 4.08617e12 2.05448
\(79\) −2.72383e12 −1.26068 −0.630339 0.776320i \(-0.717084\pi\)
−0.630339 + 0.776320i \(0.717084\pi\)
\(80\) −1.43140e13 −6.10487
\(81\) −9.57995e11 −0.376886
\(82\) 9.27947e12 3.37080
\(83\) 1.23717e12 0.415358 0.207679 0.978197i \(-0.433409\pi\)
0.207679 + 0.978197i \(0.433409\pi\)
\(84\) 1.27597e13 3.96301
\(85\) 1.76085e12 0.506407
\(86\) 5.25659e12 1.40108
\(87\) −3.45549e12 −0.854346
\(88\) 7.35765e12 1.68889
\(89\) −2.00795e12 −0.428271 −0.214135 0.976804i \(-0.568693\pi\)
−0.214135 + 0.976804i \(0.568693\pi\)
\(90\) −5.58371e12 −1.10751
\(91\) −1.32911e13 −2.45353
\(92\) −1.31035e13 −2.25302
\(93\) −5.42045e12 −0.868753
\(94\) 1.32722e13 1.98432
\(95\) 9.41407e12 1.31393
\(96\) −3.22010e13 −4.19862
\(97\) 2.76413e12 0.336932 0.168466 0.985708i \(-0.446119\pi\)
0.168466 + 0.985708i \(0.446119\pi\)
\(98\) −3.81328e13 −4.34840
\(99\) 1.77161e12 0.189121
\(100\) 1.90342e13 1.90342
\(101\) −1.05063e13 −0.984831 −0.492416 0.870360i \(-0.663886\pi\)
−0.492416 + 0.870360i \(0.663886\pi\)
\(102\) 6.71379e12 0.590291
\(103\) 6.36512e12 0.525248 0.262624 0.964898i \(-0.415412\pi\)
0.262624 + 0.964898i \(0.415412\pi\)
\(104\) 6.87926e13 5.33120
\(105\) −2.36470e13 −1.72205
\(106\) 3.81210e13 2.61022
\(107\) 2.64173e13 1.70174 0.850871 0.525375i \(-0.176075\pi\)
0.850871 + 0.525375i \(0.176075\pi\)
\(108\) −5.25081e13 −3.18399
\(109\) −2.48408e13 −1.41871 −0.709354 0.704852i \(-0.751013\pi\)
−0.709354 + 0.704852i \(0.751013\pi\)
\(110\) −2.06228e13 −1.10993
\(111\) −5.48256e12 −0.278217
\(112\) 1.77521e14 8.49831
\(113\) 1.75783e13 0.794266 0.397133 0.917761i \(-0.370005\pi\)
0.397133 + 0.917761i \(0.370005\pi\)
\(114\) 3.58940e13 1.53158
\(115\) 2.42841e13 0.979009
\(116\) −8.79845e13 −3.35296
\(117\) 1.65642e13 0.596982
\(118\) −6.45444e13 −2.20103
\(119\) −2.18379e13 −0.704946
\(120\) 1.22393e14 3.74179
\(121\) −2.79795e13 −0.810466
\(122\) −9.21753e12 −0.253091
\(123\) −4.89763e13 −1.27527
\(124\) −1.38017e14 −3.40950
\(125\) 1.94243e13 0.455438
\(126\) 6.92486e13 1.54171
\(127\) −4.33881e13 −0.917584 −0.458792 0.888544i \(-0.651718\pi\)
−0.458792 + 0.888544i \(0.651718\pi\)
\(128\) −3.49090e14 −7.01572
\(129\) −2.77439e13 −0.530071
\(130\) −1.92819e14 −3.50363
\(131\) 5.74817e13 0.993724 0.496862 0.867829i \(-0.334485\pi\)
0.496862 + 0.867829i \(0.334485\pi\)
\(132\) −5.87319e13 −0.966370
\(133\) −1.16752e14 −1.82907
\(134\) −1.86646e14 −2.78507
\(135\) 9.73112e13 1.38354
\(136\) 1.13030e14 1.53176
\(137\) −6.87709e13 −0.888631 −0.444315 0.895870i \(-0.646553\pi\)
−0.444315 + 0.895870i \(0.646553\pi\)
\(138\) 9.25907e13 1.14118
\(139\) 3.98393e13 0.468507 0.234253 0.972176i \(-0.424735\pi\)
0.234253 + 0.972176i \(0.424735\pi\)
\(140\) −6.02106e14 −6.75835
\(141\) −7.00496e13 −0.750726
\(142\) −3.08314e14 −3.15587
\(143\) 6.11778e13 0.598287
\(144\) −2.21238e14 −2.06778
\(145\) 1.63058e14 1.45697
\(146\) −1.46845e14 −1.25478
\(147\) 2.01262e14 1.64513
\(148\) −1.39598e14 −1.09189
\(149\) −9.47011e13 −0.708997 −0.354498 0.935057i \(-0.615348\pi\)
−0.354498 + 0.935057i \(0.615348\pi\)
\(150\) −1.34498e14 −0.964100
\(151\) −3.29571e13 −0.226255 −0.113127 0.993580i \(-0.536087\pi\)
−0.113127 + 0.993580i \(0.536087\pi\)
\(152\) 6.04292e14 3.97433
\(153\) 2.72158e13 0.171525
\(154\) 2.55762e14 1.54508
\(155\) 2.55781e14 1.48154
\(156\) −5.49132e14 −3.05047
\(157\) −7.31077e13 −0.389597 −0.194798 0.980843i \(-0.562405\pi\)
−0.194798 + 0.980843i \(0.562405\pi\)
\(158\) 4.90070e14 2.50604
\(159\) −2.01200e14 −0.987521
\(160\) 1.51951e15 7.16016
\(161\) −3.01169e14 −1.36283
\(162\) 1.72362e14 0.749192
\(163\) −1.07246e14 −0.447882 −0.223941 0.974603i \(-0.571892\pi\)
−0.223941 + 0.974603i \(0.571892\pi\)
\(164\) −1.24705e15 −5.00493
\(165\) 1.08845e14 0.419918
\(166\) −2.22591e14 −0.825668
\(167\) −1.01900e14 −0.363512 −0.181756 0.983344i \(-0.558178\pi\)
−0.181756 + 0.983344i \(0.558178\pi\)
\(168\) −1.51791e15 −5.20878
\(169\) 2.69125e14 0.888568
\(170\) −3.16811e14 −1.00666
\(171\) 1.45504e14 0.445041
\(172\) −7.06421e14 −2.08031
\(173\) −3.58284e14 −1.01608 −0.508040 0.861334i \(-0.669630\pi\)
−0.508040 + 0.861334i \(0.669630\pi\)
\(174\) 6.21709e14 1.69831
\(175\) 4.37480e14 1.15136
\(176\) −8.17116e14 −2.07229
\(177\) 3.40660e14 0.832713
\(178\) 3.61270e14 0.851337
\(179\) −7.27116e13 −0.165219 −0.0826093 0.996582i \(-0.526325\pi\)
−0.0826093 + 0.996582i \(0.526325\pi\)
\(180\) 7.50383e14 1.64442
\(181\) 6.54752e14 1.38410 0.692048 0.721852i \(-0.256709\pi\)
0.692048 + 0.721852i \(0.256709\pi\)
\(182\) 2.39132e15 4.87724
\(183\) 4.86494e13 0.0957515
\(184\) 1.55881e15 2.96126
\(185\) 2.58712e14 0.474460
\(186\) 9.75244e14 1.72695
\(187\) 1.00518e14 0.171899
\(188\) −1.78362e15 −2.94630
\(189\) −1.20684e15 −1.92597
\(190\) −1.69377e15 −2.61190
\(191\) −8.62822e13 −0.128589 −0.0642946 0.997931i \(-0.520480\pi\)
−0.0642946 + 0.997931i \(0.520480\pi\)
\(192\) 3.30863e15 4.76640
\(193\) −1.89475e14 −0.263893 −0.131947 0.991257i \(-0.542123\pi\)
−0.131947 + 0.991257i \(0.542123\pi\)
\(194\) −4.97320e14 −0.669768
\(195\) 1.01768e15 1.32552
\(196\) 5.12458e15 6.45646
\(197\) 5.84517e13 0.0712470
\(198\) −3.18746e14 −0.375942
\(199\) 1.07497e15 1.22702 0.613511 0.789686i \(-0.289757\pi\)
0.613511 + 0.789686i \(0.289757\pi\)
\(200\) −2.26433e15 −2.50176
\(201\) 9.85101e14 1.05367
\(202\) 1.89029e15 1.95769
\(203\) −2.02223e15 −2.02818
\(204\) −9.02251e14 −0.876458
\(205\) 2.31110e15 2.17480
\(206\) −1.14521e15 −1.04411
\(207\) 3.75336e14 0.331599
\(208\) −7.63987e15 −6.54146
\(209\) 5.37402e14 0.446014
\(210\) 4.25455e15 3.42317
\(211\) 2.40819e15 1.87868 0.939342 0.342981i \(-0.111437\pi\)
0.939342 + 0.342981i \(0.111437\pi\)
\(212\) −5.12300e15 −3.87562
\(213\) 1.62726e15 1.19396
\(214\) −4.75298e15 −3.38280
\(215\) 1.30918e15 0.903961
\(216\) 6.24644e15 4.18488
\(217\) −3.17217e15 −2.06238
\(218\) 4.46934e15 2.82017
\(219\) 7.75038e14 0.474719
\(220\) 2.77145e15 1.64801
\(221\) 9.39825e14 0.542622
\(222\) 9.86418e14 0.553053
\(223\) −1.46402e15 −0.797197 −0.398599 0.917126i \(-0.630503\pi\)
−0.398599 + 0.917126i \(0.630503\pi\)
\(224\) −1.88448e16 −9.96733
\(225\) −5.45216e14 −0.280144
\(226\) −3.16267e15 −1.57888
\(227\) 1.73723e15 0.842731 0.421365 0.906891i \(-0.361551\pi\)
0.421365 + 0.906891i \(0.361551\pi\)
\(228\) −4.82372e15 −2.27408
\(229\) −1.38840e15 −0.636187 −0.318093 0.948059i \(-0.603043\pi\)
−0.318093 + 0.948059i \(0.603043\pi\)
\(230\) −4.36918e15 −1.94612
\(231\) −1.34989e15 −0.584548
\(232\) 1.04668e16 4.40697
\(233\) 2.04504e14 0.0837313 0.0418657 0.999123i \(-0.486670\pi\)
0.0418657 + 0.999123i \(0.486670\pi\)
\(234\) −2.98021e15 −1.18671
\(235\) 3.30551e15 1.28026
\(236\) 8.67398e15 3.26806
\(237\) −2.58655e15 −0.948106
\(238\) 3.92906e15 1.40132
\(239\) −2.39140e14 −0.0829976 −0.0414988 0.999139i \(-0.513213\pi\)
−0.0414988 + 0.999139i \(0.513213\pi\)
\(240\) −1.35926e16 −4.59123
\(241\) −4.55803e15 −1.49853 −0.749267 0.662268i \(-0.769594\pi\)
−0.749267 + 0.662268i \(0.769594\pi\)
\(242\) 5.03405e15 1.61108
\(243\) 2.55259e15 0.795318
\(244\) 1.23872e15 0.375786
\(245\) −9.49718e15 −2.80553
\(246\) 8.81179e15 2.53505
\(247\) 5.02460e15 1.40790
\(248\) 1.64187e16 4.48128
\(249\) 1.17482e15 0.312374
\(250\) −3.49480e15 −0.905341
\(251\) −3.34116e15 −0.843370 −0.421685 0.906742i \(-0.638561\pi\)
−0.421685 + 0.906742i \(0.638561\pi\)
\(252\) −9.30617e15 −2.28911
\(253\) 1.38626e15 0.332324
\(254\) 7.80635e15 1.82402
\(255\) 1.67210e15 0.380849
\(256\) 3.42651e16 7.60839
\(257\) −3.94292e15 −0.853597 −0.426798 0.904347i \(-0.640359\pi\)
−0.426798 + 0.904347i \(0.640359\pi\)
\(258\) 4.99165e15 1.05370
\(259\) −3.20852e15 −0.660474
\(260\) 2.59125e16 5.20215
\(261\) 2.52023e15 0.493488
\(262\) −1.03421e16 −1.97537
\(263\) −8.18969e15 −1.52600 −0.763001 0.646398i \(-0.776275\pi\)
−0.763001 + 0.646398i \(0.776275\pi\)
\(264\) 6.98683e15 1.27015
\(265\) 9.49425e15 1.68408
\(266\) 2.10060e16 3.63591
\(267\) −1.90675e15 −0.322086
\(268\) 2.50829e16 4.13524
\(269\) −2.24633e15 −0.361480 −0.180740 0.983531i \(-0.557849\pi\)
−0.180740 + 0.983531i \(0.557849\pi\)
\(270\) −1.75082e16 −2.75027
\(271\) −6.38241e15 −0.978779 −0.489389 0.872065i \(-0.662780\pi\)
−0.489389 + 0.872065i \(0.662780\pi\)
\(272\) −1.25527e16 −1.87949
\(273\) −1.26212e16 −1.84520
\(274\) 1.23732e16 1.76646
\(275\) −2.01369e15 −0.280757
\(276\) −1.24431e16 −1.69441
\(277\) −1.21980e16 −1.62244 −0.811221 0.584739i \(-0.801197\pi\)
−0.811221 + 0.584739i \(0.801197\pi\)
\(278\) −7.16786e15 −0.931319
\(279\) 3.95336e15 0.501810
\(280\) 7.16274e16 8.88284
\(281\) 1.40647e16 1.70428 0.852138 0.523317i \(-0.175305\pi\)
0.852138 + 0.523317i \(0.175305\pi\)
\(282\) 1.26033e16 1.49233
\(283\) −8.61075e15 −0.996390 −0.498195 0.867065i \(-0.666004\pi\)
−0.498195 + 0.867065i \(0.666004\pi\)
\(284\) 4.14336e16 4.68580
\(285\) 8.93960e15 0.988158
\(286\) −1.10071e16 −1.18930
\(287\) −2.86621e16 −3.02744
\(288\) 2.34855e16 2.42521
\(289\) −8.36040e15 −0.844094
\(290\) −2.93373e16 −2.89623
\(291\) 2.62482e15 0.253393
\(292\) 1.97342e16 1.86308
\(293\) −4.30153e15 −0.397176 −0.198588 0.980083i \(-0.563636\pi\)
−0.198588 + 0.980083i \(0.563636\pi\)
\(294\) −3.62109e16 −3.27026
\(295\) −1.60751e16 −1.42008
\(296\) 1.66068e16 1.43513
\(297\) 5.55501e15 0.469643
\(298\) 1.70386e16 1.40938
\(299\) 1.29613e16 1.04902
\(300\) 1.80749e16 1.43149
\(301\) −1.62363e16 −1.25836
\(302\) 5.92961e15 0.449760
\(303\) −9.97681e15 −0.740652
\(304\) −6.71107e16 −4.87656
\(305\) −2.29568e15 −0.163291
\(306\) −4.89664e15 −0.340964
\(307\) −2.23744e14 −0.0152529 −0.00762646 0.999971i \(-0.502428\pi\)
−0.00762646 + 0.999971i \(0.502428\pi\)
\(308\) −3.43712e16 −2.29412
\(309\) 6.04432e15 0.395018
\(310\) −4.60200e16 −2.94507
\(311\) 5.67402e15 0.355589 0.177795 0.984068i \(-0.443104\pi\)
0.177795 + 0.984068i \(0.443104\pi\)
\(312\) 6.53255e16 4.00938
\(313\) −3.48732e15 −0.209630 −0.104815 0.994492i \(-0.533425\pi\)
−0.104815 + 0.994492i \(0.533425\pi\)
\(314\) 1.31535e16 0.774458
\(315\) 1.72467e16 0.994692
\(316\) −6.58594e16 −3.72093
\(317\) 2.55013e15 0.141149 0.0705743 0.997507i \(-0.477517\pi\)
0.0705743 + 0.997507i \(0.477517\pi\)
\(318\) 3.61997e16 1.96304
\(319\) 9.30817e15 0.494567
\(320\) −1.56128e17 −8.12842
\(321\) 2.50859e16 1.27981
\(322\) 5.41862e16 2.70910
\(323\) 8.25568e15 0.404516
\(324\) −2.31633e16 −1.11239
\(325\) −1.88276e16 −0.886243
\(326\) 1.92957e16 0.890321
\(327\) −2.35888e16 −1.06695
\(328\) 1.48351e17 6.57823
\(329\) −4.09946e16 −1.78219
\(330\) −1.95834e16 −0.834733
\(331\) 3.94321e16 1.64804 0.824019 0.566562i \(-0.191727\pi\)
0.824019 + 0.566562i \(0.191727\pi\)
\(332\) 2.99135e16 1.22594
\(333\) 3.99866e15 0.160704
\(334\) 1.83338e16 0.722605
\(335\) −4.64851e16 −1.79689
\(336\) 1.68574e17 6.39124
\(337\) 1.07163e16 0.398520 0.199260 0.979947i \(-0.436146\pi\)
0.199260 + 0.979947i \(0.436146\pi\)
\(338\) −4.84208e16 −1.76634
\(339\) 1.66923e16 0.597336
\(340\) 4.25755e16 1.49468
\(341\) 1.46013e16 0.502906
\(342\) −2.61790e16 −0.884674
\(343\) 6.39392e16 2.12010
\(344\) 8.40368e16 2.73426
\(345\) 2.30602e16 0.736274
\(346\) 6.44622e16 2.01981
\(347\) −2.18057e16 −0.670547 −0.335273 0.942121i \(-0.608829\pi\)
−0.335273 + 0.942121i \(0.608829\pi\)
\(348\) −8.35500e16 −2.52163
\(349\) 5.38017e16 1.59379 0.796895 0.604118i \(-0.206475\pi\)
0.796895 + 0.604118i \(0.206475\pi\)
\(350\) −7.87112e16 −2.28873
\(351\) 5.19382e16 1.48249
\(352\) 8.67411e16 2.43051
\(353\) 5.29552e16 1.45671 0.728355 0.685200i \(-0.240285\pi\)
0.728355 + 0.685200i \(0.240285\pi\)
\(354\) −6.12914e16 −1.65531
\(355\) −7.67872e16 −2.03613
\(356\) −4.85502e16 −1.26406
\(357\) −2.07373e16 −0.530162
\(358\) 1.30822e16 0.328429
\(359\) −2.11409e16 −0.521206 −0.260603 0.965446i \(-0.583921\pi\)
−0.260603 + 0.965446i \(0.583921\pi\)
\(360\) −8.92666e16 −2.16134
\(361\) 2.08446e15 0.0495674
\(362\) −1.17803e17 −2.75137
\(363\) −2.65693e16 −0.609519
\(364\) −3.21364e17 −7.24167
\(365\) −3.65726e16 −0.809566
\(366\) −8.75297e15 −0.190339
\(367\) 1.72307e15 0.0368106 0.0184053 0.999831i \(-0.494141\pi\)
0.0184053 + 0.999831i \(0.494141\pi\)
\(368\) −1.73116e17 −3.63351
\(369\) 3.57205e16 0.736624
\(370\) −4.65472e16 −0.943154
\(371\) −1.17747e17 −2.34433
\(372\) −1.31061e17 −2.56415
\(373\) 3.67155e16 0.705899 0.352949 0.935642i \(-0.385179\pi\)
0.352949 + 0.935642i \(0.385179\pi\)
\(374\) −1.80852e16 −0.341710
\(375\) 1.84453e16 0.342517
\(376\) 2.12182e17 3.87247
\(377\) 8.70295e16 1.56116
\(378\) 2.17134e17 3.82853
\(379\) 2.67731e16 0.464028 0.232014 0.972712i \(-0.425468\pi\)
0.232014 + 0.972712i \(0.425468\pi\)
\(380\) 2.27622e17 3.87812
\(381\) −4.12013e16 −0.690079
\(382\) 1.55238e16 0.255615
\(383\) −1.85352e16 −0.300058 −0.150029 0.988682i \(-0.547937\pi\)
−0.150029 + 0.988682i \(0.547937\pi\)
\(384\) −3.31496e17 −5.27624
\(385\) 6.36988e16 0.996866
\(386\) 3.40901e16 0.524579
\(387\) 2.02347e16 0.306180
\(388\) 6.68337e16 0.994465
\(389\) 1.15175e17 1.68533 0.842666 0.538437i \(-0.180985\pi\)
0.842666 + 0.538437i \(0.180985\pi\)
\(390\) −1.83101e17 −2.63494
\(391\) 2.12960e16 0.301404
\(392\) −6.09628e17 −8.48604
\(393\) 5.45846e16 0.747341
\(394\) −1.05166e16 −0.141628
\(395\) 1.22055e17 1.61686
\(396\) 4.28356e16 0.558195
\(397\) −9.98843e15 −0.128044 −0.0640219 0.997948i \(-0.520393\pi\)
−0.0640219 + 0.997948i \(0.520393\pi\)
\(398\) −1.93408e17 −2.43913
\(399\) −1.10868e17 −1.37557
\(400\) 2.51469e17 3.06969
\(401\) 1.08698e16 0.130552 0.0652761 0.997867i \(-0.479207\pi\)
0.0652761 + 0.997867i \(0.479207\pi\)
\(402\) −1.77239e17 −2.09454
\(403\) 1.36519e17 1.58749
\(404\) −2.54032e17 −2.90676
\(405\) 4.29276e16 0.483369
\(406\) 3.63838e17 4.03171
\(407\) 1.47686e16 0.161055
\(408\) 1.07333e17 1.15197
\(409\) 2.72337e16 0.287677 0.143838 0.989601i \(-0.454055\pi\)
0.143838 + 0.989601i \(0.454055\pi\)
\(410\) −4.15812e17 −4.32317
\(411\) −6.53049e16 −0.668304
\(412\) 1.53902e17 1.55029
\(413\) 1.99362e17 1.97682
\(414\) −6.75302e16 −0.659168
\(415\) −5.54375e16 −0.532710
\(416\) 8.11012e17 7.67221
\(417\) 3.78314e16 0.352345
\(418\) −9.66890e16 −0.886607
\(419\) −7.15857e16 −0.646302 −0.323151 0.946347i \(-0.604742\pi\)
−0.323151 + 0.946347i \(0.604742\pi\)
\(420\) −5.71760e17 −5.08269
\(421\) −1.30140e17 −1.13914 −0.569568 0.821944i \(-0.692890\pi\)
−0.569568 + 0.821944i \(0.692890\pi\)
\(422\) −4.33279e17 −3.73454
\(423\) 5.10901e16 0.433635
\(424\) 6.09439e17 5.09392
\(425\) −3.09347e16 −0.254635
\(426\) −2.92775e17 −2.37340
\(427\) 2.84707e16 0.227310
\(428\) 6.38742e17 5.02275
\(429\) 5.80945e16 0.449948
\(430\) −2.35547e17 −1.79694
\(431\) 1.06072e17 0.797077 0.398539 0.917152i \(-0.369518\pi\)
0.398539 + 0.917152i \(0.369518\pi\)
\(432\) −6.93708e17 −5.13491
\(433\) −1.27008e17 −0.926105 −0.463053 0.886331i \(-0.653246\pi\)
−0.463053 + 0.886331i \(0.653246\pi\)
\(434\) 5.70735e17 4.09969
\(435\) 1.54840e17 1.09573
\(436\) −6.00624e17 −4.18736
\(437\) 1.13855e17 0.782030
\(438\) −1.39444e17 −0.943668
\(439\) −1.15719e17 −0.771585 −0.385793 0.922585i \(-0.626072\pi\)
−0.385793 + 0.922585i \(0.626072\pi\)
\(440\) −3.29695e17 −2.16606
\(441\) −1.46789e17 −0.950259
\(442\) −1.69093e17 −1.07865
\(443\) −1.20090e17 −0.754887 −0.377444 0.926033i \(-0.623197\pi\)
−0.377444 + 0.926033i \(0.623197\pi\)
\(444\) −1.32563e17 −0.821167
\(445\) 8.99761e16 0.549272
\(446\) 2.63406e17 1.58471
\(447\) −8.99282e16 −0.533208
\(448\) 1.93629e18 11.3152
\(449\) −1.75762e17 −1.01233 −0.506167 0.862436i \(-0.668938\pi\)
−0.506167 + 0.862436i \(0.668938\pi\)
\(450\) 9.80948e16 0.556884
\(451\) 1.31929e17 0.738234
\(452\) 4.25024e17 2.34430
\(453\) −3.12960e16 −0.170157
\(454\) −3.12561e17 −1.67522
\(455\) 5.95571e17 3.14673
\(456\) 5.73836e17 2.98893
\(457\) −1.32882e17 −0.682354 −0.341177 0.939999i \(-0.610826\pi\)
−0.341177 + 0.939999i \(0.610826\pi\)
\(458\) 2.49800e17 1.26464
\(459\) 8.53371e16 0.425947
\(460\) 5.87165e17 2.88958
\(461\) 3.09208e17 1.50036 0.750178 0.661236i \(-0.229968\pi\)
0.750178 + 0.661236i \(0.229968\pi\)
\(462\) 2.42871e17 1.16199
\(463\) 2.90252e16 0.136930 0.0684649 0.997654i \(-0.478190\pi\)
0.0684649 + 0.997654i \(0.478190\pi\)
\(464\) −1.16240e18 −5.40741
\(465\) 2.42890e17 1.11420
\(466\) −3.67942e16 −0.166445
\(467\) 2.30131e17 1.02664 0.513318 0.858199i \(-0.328416\pi\)
0.513318 + 0.858199i \(0.328416\pi\)
\(468\) 4.00504e17 1.76201
\(469\) 5.76503e17 2.50137
\(470\) −5.94725e17 −2.54496
\(471\) −6.94231e16 −0.293000
\(472\) −1.03187e18 −4.29538
\(473\) 7.47346e16 0.306849
\(474\) 4.65371e17 1.88469
\(475\) −1.65387e17 −0.660681
\(476\) −5.28018e17 −2.08067
\(477\) 1.46743e17 0.570412
\(478\) 4.30259e16 0.164987
\(479\) −3.81414e17 −1.44283 −0.721415 0.692503i \(-0.756508\pi\)
−0.721415 + 0.692503i \(0.756508\pi\)
\(480\) 1.44292e18 5.38487
\(481\) 1.38083e17 0.508391
\(482\) 8.20078e17 2.97886
\(483\) −2.85990e17 −1.02493
\(484\) −6.76515e17 −2.39212
\(485\) −1.23860e17 −0.432126
\(486\) −4.59261e17 −1.58097
\(487\) 4.68618e17 1.59177 0.795886 0.605446i \(-0.207005\pi\)
0.795886 + 0.605446i \(0.207005\pi\)
\(488\) −1.47360e17 −0.493914
\(489\) −1.01841e17 −0.336834
\(490\) 1.70873e18 5.57697
\(491\) 2.44995e17 0.789092 0.394546 0.918876i \(-0.370902\pi\)
0.394546 + 0.918876i \(0.370902\pi\)
\(492\) −1.18420e18 −3.76401
\(493\) 1.42994e17 0.448552
\(494\) −9.04023e17 −2.79869
\(495\) −7.93855e16 −0.242553
\(496\) −1.82340e18 −5.49860
\(497\) 9.52307e17 2.83440
\(498\) −2.11373e17 −0.620952
\(499\) −5.79975e17 −1.68173 −0.840864 0.541247i \(-0.817952\pi\)
−0.840864 + 0.541247i \(0.817952\pi\)
\(500\) 4.69659e17 1.34424
\(501\) −9.67645e16 −0.273383
\(502\) 6.01139e17 1.67649
\(503\) −1.22373e17 −0.336894 −0.168447 0.985711i \(-0.553875\pi\)
−0.168447 + 0.985711i \(0.553875\pi\)
\(504\) 1.10707e18 3.00870
\(505\) 4.70787e17 1.26308
\(506\) −2.49415e17 −0.660608
\(507\) 2.55561e17 0.668257
\(508\) −1.04908e18 −2.70828
\(509\) −1.55692e17 −0.396827 −0.198413 0.980118i \(-0.563579\pi\)
−0.198413 + 0.980118i \(0.563579\pi\)
\(510\) −3.00844e17 −0.757068
\(511\) 4.53570e17 1.12696
\(512\) −3.30522e18 −8.10858
\(513\) 4.56239e17 1.10517
\(514\) 7.09408e17 1.69682
\(515\) −2.85220e17 −0.673649
\(516\) −6.70817e17 −1.56452
\(517\) 1.88695e17 0.434583
\(518\) 5.77274e17 1.31292
\(519\) −3.40226e17 −0.764153
\(520\) −3.08259e18 −6.83744
\(521\) −3.93047e17 −0.860992 −0.430496 0.902592i \(-0.641661\pi\)
−0.430496 + 0.902592i \(0.641661\pi\)
\(522\) −4.53438e17 −0.980978
\(523\) 9.83337e16 0.210107 0.105054 0.994467i \(-0.466499\pi\)
0.105054 + 0.994467i \(0.466499\pi\)
\(524\) 1.38985e18 2.93301
\(525\) 4.15431e17 0.865892
\(526\) 1.47348e18 3.03346
\(527\) 2.24307e17 0.456115
\(528\) −7.75934e17 −1.55849
\(529\) −2.10340e17 −0.417312
\(530\) −1.70820e18 −3.34769
\(531\) −2.48458e17 −0.480992
\(532\) −2.82295e18 −5.39855
\(533\) 1.23351e18 2.33033
\(534\) 3.43062e17 0.640257
\(535\) −1.18375e18 −2.18254
\(536\) −2.98389e18 −5.43516
\(537\) −6.90469e16 −0.124254
\(538\) 4.04159e17 0.718567
\(539\) −5.42147e17 −0.952335
\(540\) 2.35288e18 4.08358
\(541\) −6.47497e17 −1.11034 −0.555169 0.831737i \(-0.687347\pi\)
−0.555169 + 0.831737i \(0.687347\pi\)
\(542\) 1.14832e18 1.94566
\(543\) 6.21753e17 1.04092
\(544\) 1.33253e18 2.20437
\(545\) 1.11311e18 1.81954
\(546\) 2.27080e18 3.66797
\(547\) 1.09348e18 1.74540 0.872699 0.488258i \(-0.162367\pi\)
0.872699 + 0.488258i \(0.162367\pi\)
\(548\) −1.66281e18 −2.62282
\(549\) −3.54820e16 −0.0553080
\(550\) 3.62302e17 0.558101
\(551\) 7.64490e17 1.16382
\(552\) 1.48024e18 2.22705
\(553\) −1.51371e18 −2.25076
\(554\) 2.19465e18 3.22517
\(555\) 2.45673e17 0.356823
\(556\) 9.63273e17 1.38281
\(557\) −3.99173e17 −0.566373 −0.283187 0.959065i \(-0.591392\pi\)
−0.283187 + 0.959065i \(0.591392\pi\)
\(558\) −7.11286e17 −0.997520
\(559\) 6.98754e17 0.968606
\(560\) −7.95469e18 −10.8994
\(561\) 9.54521e16 0.129279
\(562\) −2.53052e18 −3.38784
\(563\) −1.22152e18 −1.61658 −0.808289 0.588786i \(-0.799606\pi\)
−0.808289 + 0.588786i \(0.799606\pi\)
\(564\) −1.69373e18 −2.21579
\(565\) −7.87680e17 −1.01867
\(566\) 1.54924e18 1.98067
\(567\) −5.32384e17 −0.672876
\(568\) −4.92900e18 −6.15878
\(569\) −1.25761e18 −1.55352 −0.776758 0.629799i \(-0.783137\pi\)
−0.776758 + 0.629799i \(0.783137\pi\)
\(570\) −1.60841e18 −1.96431
\(571\) −5.65025e16 −0.0682234 −0.0341117 0.999418i \(-0.510860\pi\)
−0.0341117 + 0.999418i \(0.510860\pi\)
\(572\) 1.47922e18 1.76586
\(573\) −8.19336e16 −0.0967068
\(574\) 5.15686e18 6.01808
\(575\) −4.26624e17 −0.492272
\(576\) −2.41312e18 −2.75317
\(577\) 3.40172e17 0.383757 0.191878 0.981419i \(-0.438542\pi\)
0.191878 + 0.981419i \(0.438542\pi\)
\(578\) 1.50420e18 1.67793
\(579\) −1.79925e17 −0.198464
\(580\) 3.94257e18 4.30029
\(581\) 6.87531e17 0.741561
\(582\) −4.72255e17 −0.503706
\(583\) 5.41979e17 0.571659
\(584\) −2.34761e18 −2.44874
\(585\) −7.42238e17 −0.765650
\(586\) 7.73928e17 0.789525
\(587\) 2.21946e17 0.223923 0.111962 0.993713i \(-0.464287\pi\)
0.111962 + 0.993713i \(0.464287\pi\)
\(588\) 4.86631e18 4.85564
\(589\) 1.19922e18 1.18345
\(590\) 2.89223e18 2.82289
\(591\) 5.55058e16 0.0535821
\(592\) −1.84430e18 −1.76092
\(593\) 6.07196e17 0.573421 0.286710 0.958017i \(-0.407438\pi\)
0.286710 + 0.958017i \(0.407438\pi\)
\(594\) −9.99453e17 −0.933578
\(595\) 9.78553e17 0.904116
\(596\) −2.28977e18 −2.09263
\(597\) 1.02079e18 0.922794
\(598\) −2.33198e18 −2.08529
\(599\) −5.09986e17 −0.451111 −0.225556 0.974230i \(-0.572420\pi\)
−0.225556 + 0.974230i \(0.572420\pi\)
\(600\) −2.15021e18 −1.88147
\(601\) −1.49306e18 −1.29239 −0.646196 0.763171i \(-0.723641\pi\)
−0.646196 + 0.763171i \(0.723641\pi\)
\(602\) 2.92123e18 2.50143
\(603\) −7.18475e17 −0.608624
\(604\) −7.96867e17 −0.667799
\(605\) 1.25376e18 1.03945
\(606\) 1.79502e18 1.47230
\(607\) 1.36674e18 1.10907 0.554534 0.832161i \(-0.312897\pi\)
0.554534 + 0.832161i \(0.312897\pi\)
\(608\) 7.12414e18 5.71952
\(609\) −1.92031e18 −1.52531
\(610\) 4.13036e17 0.324597
\(611\) 1.76426e18 1.37181
\(612\) 6.58049e17 0.506260
\(613\) 9.93340e17 0.756144 0.378072 0.925776i \(-0.376587\pi\)
0.378072 + 0.925776i \(0.376587\pi\)
\(614\) 4.02559e16 0.0303204
\(615\) 2.19462e18 1.63558
\(616\) 4.08885e18 3.01527
\(617\) 1.42569e18 1.04033 0.520165 0.854066i \(-0.325870\pi\)
0.520165 + 0.854066i \(0.325870\pi\)
\(618\) −1.08749e18 −0.785236
\(619\) −2.09244e18 −1.49508 −0.747540 0.664217i \(-0.768765\pi\)
−0.747540 + 0.664217i \(0.768765\pi\)
\(620\) 6.18452e18 4.37280
\(621\) 1.17690e18 0.823460
\(622\) −1.02087e18 −0.706857
\(623\) −1.11587e18 −0.764616
\(624\) −7.25482e18 −4.91957
\(625\) −1.83136e18 −1.22901
\(626\) 6.27437e17 0.416713
\(627\) 5.10317e17 0.335429
\(628\) −1.76767e18 −1.14991
\(629\) 2.26878e17 0.146070
\(630\) −3.10302e18 −1.97729
\(631\) −7.86264e17 −0.495881 −0.247941 0.968775i \(-0.579754\pi\)
−0.247941 + 0.968775i \(0.579754\pi\)
\(632\) 7.83473e18 4.89061
\(633\) 2.28681e18 1.41288
\(634\) −4.58817e17 −0.280582
\(635\) 1.94421e18 1.17683
\(636\) −4.86480e18 −2.91470
\(637\) −5.06896e18 −3.00617
\(638\) −1.67472e18 −0.983122
\(639\) −1.18683e18 −0.689654
\(640\) 1.56427e19 8.99790
\(641\) 3.27038e18 1.86217 0.931087 0.364796i \(-0.118861\pi\)
0.931087 + 0.364796i \(0.118861\pi\)
\(642\) −4.51343e18 −2.54407
\(643\) −3.06098e18 −1.70800 −0.854002 0.520270i \(-0.825831\pi\)
−0.854002 + 0.520270i \(0.825831\pi\)
\(644\) −7.28196e18 −4.02245
\(645\) 1.24320e18 0.679833
\(646\) −1.48536e18 −0.804117
\(647\) −1.53058e18 −0.820309 −0.410155 0.912016i \(-0.634525\pi\)
−0.410155 + 0.912016i \(0.634525\pi\)
\(648\) 2.75554e18 1.46207
\(649\) −9.17649e17 −0.482044
\(650\) 3.38745e18 1.76172
\(651\) −3.01229e18 −1.55103
\(652\) −2.59311e18 −1.32194
\(653\) −1.57615e18 −0.795537 −0.397769 0.917486i \(-0.630215\pi\)
−0.397769 + 0.917486i \(0.630215\pi\)
\(654\) 4.24408e18 2.12094
\(655\) −2.57575e18 −1.27448
\(656\) −1.64753e19 −8.07158
\(657\) −5.65267e17 −0.274207
\(658\) 7.37572e18 3.54272
\(659\) 2.49587e18 1.18705 0.593523 0.804817i \(-0.297737\pi\)
0.593523 + 0.804817i \(0.297737\pi\)
\(660\) 2.63177e18 1.23940
\(661\) 3.73226e18 1.74045 0.870227 0.492651i \(-0.163972\pi\)
0.870227 + 0.492651i \(0.163972\pi\)
\(662\) −7.09459e18 −3.27605
\(663\) 8.92458e17 0.408084
\(664\) −3.55856e18 −1.61132
\(665\) 5.23165e18 2.34584
\(666\) −7.19436e17 −0.319455
\(667\) 1.97205e18 0.867160
\(668\) −2.46384e18 −1.07292
\(669\) −1.39023e18 −0.599540
\(670\) 8.36356e18 3.57195
\(671\) −1.31049e17 −0.0554289
\(672\) −1.78950e19 −7.49603
\(673\) −1.97434e18 −0.819075 −0.409538 0.912293i \(-0.634310\pi\)
−0.409538 + 0.912293i \(0.634310\pi\)
\(674\) −1.92807e18 −0.792196
\(675\) −1.70957e18 −0.695683
\(676\) 6.50717e18 2.62264
\(677\) −9.89801e17 −0.395113 −0.197557 0.980291i \(-0.563301\pi\)
−0.197557 + 0.980291i \(0.563301\pi\)
\(678\) −3.00327e18 −1.18741
\(679\) 1.53610e18 0.601542
\(680\) −5.06485e18 −1.96453
\(681\) 1.64967e18 0.633784
\(682\) −2.62705e18 −0.999700
\(683\) 2.17179e18 0.818621 0.409310 0.912395i \(-0.365769\pi\)
0.409310 + 0.912395i \(0.365769\pi\)
\(684\) 3.51814e18 1.31355
\(685\) 3.08162e18 1.13970
\(686\) −1.15039e19 −4.21442
\(687\) −1.31843e18 −0.478451
\(688\) −9.33284e18 −3.35497
\(689\) 5.06740e18 1.80451
\(690\) −4.14898e18 −1.46360
\(691\) 3.72762e18 1.30264 0.651321 0.758803i \(-0.274215\pi\)
0.651321 + 0.758803i \(0.274215\pi\)
\(692\) −8.66293e18 −2.99899
\(693\) 9.84531e17 0.337647
\(694\) 3.92327e18 1.33294
\(695\) −1.78520e18 −0.600875
\(696\) 9.93923e18 3.31431
\(697\) 2.02672e18 0.669548
\(698\) −9.67997e18 −3.16821
\(699\) 1.94197e17 0.0629710
\(700\) 1.05778e19 3.39828
\(701\) 2.23745e18 0.712175 0.356087 0.934453i \(-0.384111\pi\)
0.356087 + 0.934453i \(0.384111\pi\)
\(702\) −9.34469e18 −2.94696
\(703\) 1.21296e18 0.378998
\(704\) −8.91258e18 −2.75919
\(705\) 3.13891e18 0.962831
\(706\) −9.52767e18 −2.89572
\(707\) −5.83865e18 −1.75827
\(708\) 8.23681e18 2.45778
\(709\) −3.34421e17 −0.0988765 −0.0494383 0.998777i \(-0.515743\pi\)
−0.0494383 + 0.998777i \(0.515743\pi\)
\(710\) 1.38155e19 4.04751
\(711\) 1.88648e18 0.547646
\(712\) 5.77560e18 1.66141
\(713\) 3.09345e18 0.881783
\(714\) 3.73104e18 1.05388
\(715\) −2.74137e18 −0.767323
\(716\) −1.75809e18 −0.487648
\(717\) −2.27087e17 −0.0624192
\(718\) 3.80365e18 1.03608
\(719\) −4.70240e18 −1.26935 −0.634675 0.772779i \(-0.718866\pi\)
−0.634675 + 0.772779i \(0.718866\pi\)
\(720\) 9.91364e18 2.65199
\(721\) 3.53727e18 0.937755
\(722\) −3.75034e17 −0.0985324
\(723\) −4.32831e18 −1.12699
\(724\) 1.58312e19 4.08520
\(725\) −2.86461e18 −0.732602
\(726\) 4.78034e18 1.21163
\(727\) 4.48755e18 1.12729 0.563645 0.826017i \(-0.309399\pi\)
0.563645 + 0.826017i \(0.309399\pi\)
\(728\) 3.82299e19 9.51808
\(729\) 3.95130e18 0.975013
\(730\) 6.58012e18 1.60929
\(731\) 1.14809e18 0.278299
\(732\) 1.17629e18 0.282614
\(733\) −5.17738e17 −0.123292 −0.0616459 0.998098i \(-0.519635\pi\)
−0.0616459 + 0.998098i \(0.519635\pi\)
\(734\) −3.10013e17 −0.0731738
\(735\) −9.01852e18 −2.10993
\(736\) 1.83771e19 4.26159
\(737\) −2.65360e18 −0.609954
\(738\) −6.42680e18 −1.46429
\(739\) −2.71391e18 −0.612924 −0.306462 0.951883i \(-0.599145\pi\)
−0.306462 + 0.951883i \(0.599145\pi\)
\(740\) 6.25538e18 1.40039
\(741\) 4.77136e18 1.05882
\(742\) 2.11849e19 4.66016
\(743\) −4.43179e18 −0.966389 −0.483195 0.875513i \(-0.660524\pi\)
−0.483195 + 0.875513i \(0.660524\pi\)
\(744\) 1.55912e19 3.37019
\(745\) 4.24354e18 0.909312
\(746\) −6.60583e18 −1.40322
\(747\) −8.56844e17 −0.180434
\(748\) 2.43043e18 0.507367
\(749\) 1.46808e19 3.03821
\(750\) −3.31866e18 −0.680871
\(751\) −4.61250e18 −0.938160 −0.469080 0.883156i \(-0.655414\pi\)
−0.469080 + 0.883156i \(0.655414\pi\)
\(752\) −2.35642e19 −4.75157
\(753\) −3.17276e18 −0.634265
\(754\) −1.56583e19 −3.10335
\(755\) 1.47680e18 0.290180
\(756\) −2.91802e19 −5.68456
\(757\) −4.52388e18 −0.873751 −0.436876 0.899522i \(-0.643915\pi\)
−0.436876 + 0.899522i \(0.643915\pi\)
\(758\) −4.81700e18 −0.922417
\(759\) 1.31639e18 0.249927
\(760\) −2.70783e19 −5.09721
\(761\) −1.47709e18 −0.275680 −0.137840 0.990454i \(-0.544016\pi\)
−0.137840 + 0.990454i \(0.544016\pi\)
\(762\) 7.41291e18 1.37177
\(763\) −1.38047e19 −2.53290
\(764\) −2.08621e18 −0.379535
\(765\) −1.21954e18 −0.219986
\(766\) 3.33484e18 0.596469
\(767\) −8.57984e18 −1.52163
\(768\) 3.25382e19 5.72197
\(769\) 4.28730e18 0.747588 0.373794 0.927512i \(-0.378057\pi\)
0.373794 + 0.927512i \(0.378057\pi\)
\(770\) −1.14606e19 −1.98162
\(771\) −3.74420e18 −0.641956
\(772\) −4.58130e18 −0.778890
\(773\) 8.06317e18 1.35937 0.679687 0.733502i \(-0.262115\pi\)
0.679687 + 0.733502i \(0.262115\pi\)
\(774\) −3.64062e18 −0.608638
\(775\) −4.49357e18 −0.744956
\(776\) −7.95063e18 −1.30707
\(777\) −3.04681e18 −0.496716
\(778\) −2.07222e19 −3.35018
\(779\) 1.08355e19 1.73722
\(780\) 2.46065e19 3.91233
\(781\) −4.38340e18 −0.691161
\(782\) −3.83156e18 −0.599145
\(783\) 7.90237e18 1.22548
\(784\) 6.77032e19 10.4125
\(785\) 3.27595e18 0.499671
\(786\) −9.82082e18 −1.48560
\(787\) 1.04577e17 0.0156892 0.00784459 0.999969i \(-0.497503\pi\)
0.00784459 + 0.999969i \(0.497503\pi\)
\(788\) 1.41330e18 0.210288
\(789\) −7.77693e18 −1.14764
\(790\) −2.19600e19 −3.21407
\(791\) 9.76873e18 1.41805
\(792\) −5.09578e18 −0.733664
\(793\) −1.22528e18 −0.174968
\(794\) 1.79711e18 0.254532
\(795\) 9.01574e18 1.26653
\(796\) 2.59917e19 3.62159
\(797\) 2.01353e18 0.278278 0.139139 0.990273i \(-0.455567\pi\)
0.139139 + 0.990273i \(0.455567\pi\)
\(798\) 1.99473e19 2.73442
\(799\) 2.89877e18 0.394149
\(800\) −2.66947e19 −3.60032
\(801\) 1.39067e18 0.186043
\(802\) −1.95569e18 −0.259518
\(803\) −2.08775e18 −0.274807
\(804\) 2.38187e19 3.10995
\(805\) 1.34954e19 1.74788
\(806\) −2.45624e19 −3.15568
\(807\) −2.13312e18 −0.271855
\(808\) 3.02200e19 3.82050
\(809\) −1.22832e19 −1.54045 −0.770223 0.637775i \(-0.779855\pi\)
−0.770223 + 0.637775i \(0.779855\pi\)
\(810\) −7.72351e18 −0.960864
\(811\) 1.18857e19 1.46687 0.733433 0.679762i \(-0.237917\pi\)
0.733433 + 0.679762i \(0.237917\pi\)
\(812\) −4.88954e19 −5.98623
\(813\) −6.06074e18 −0.736100
\(814\) −2.65715e18 −0.320153
\(815\) 4.80570e18 0.574424
\(816\) −1.19200e19 −1.41349
\(817\) 6.13804e18 0.722081
\(818\) −4.89986e18 −0.571857
\(819\) 9.20516e18 1.06583
\(820\) 5.58801e19 6.41899
\(821\) 9.46016e18 1.07812 0.539061 0.842267i \(-0.318779\pi\)
0.539061 + 0.842267i \(0.318779\pi\)
\(822\) 1.17496e19 1.32849
\(823\) 1.10832e19 1.24327 0.621635 0.783307i \(-0.286469\pi\)
0.621635 + 0.783307i \(0.286469\pi\)
\(824\) −1.83084e19 −2.03762
\(825\) −1.91220e18 −0.211146
\(826\) −3.58691e19 −3.92962
\(827\) 2.09887e18 0.228139 0.114070 0.993473i \(-0.463611\pi\)
0.114070 + 0.993473i \(0.463611\pi\)
\(828\) 9.07524e18 0.978725
\(829\) −2.98771e18 −0.319694 −0.159847 0.987142i \(-0.551100\pi\)
−0.159847 + 0.987142i \(0.551100\pi\)
\(830\) 9.97428e18 1.05895
\(831\) −1.15832e19 −1.22017
\(832\) −8.33308e19 −8.70972
\(833\) −8.32856e18 −0.863729
\(834\) −6.80661e18 −0.700408
\(835\) 4.56614e18 0.466216
\(836\) 1.29938e19 1.31642
\(837\) 1.23961e19 1.24614
\(838\) 1.28797e19 1.28475
\(839\) 2.28066e18 0.225739 0.112870 0.993610i \(-0.463996\pi\)
0.112870 + 0.993610i \(0.463996\pi\)
\(840\) 6.80174e19 6.68043
\(841\) 2.98086e18 0.290514
\(842\) 2.34146e19 2.26443
\(843\) 1.33559e19 1.28172
\(844\) 5.82274e19 5.54500
\(845\) −1.20595e19 −1.13962
\(846\) −9.19209e18 −0.861999
\(847\) −1.55490e19 −1.44697
\(848\) −6.76823e19 −6.25031
\(849\) −8.17677e18 −0.749345
\(850\) 5.56575e18 0.506175
\(851\) 3.12890e18 0.282390
\(852\) 3.93454e19 3.52400
\(853\) 7.21495e18 0.641305 0.320653 0.947197i \(-0.396098\pi\)
0.320653 + 0.947197i \(0.396098\pi\)
\(854\) −5.12244e18 −0.451856
\(855\) −6.52002e18 −0.570780
\(856\) −7.59857e19 −6.60165
\(857\) 1.06390e18 0.0917328 0.0458664 0.998948i \(-0.485395\pi\)
0.0458664 + 0.998948i \(0.485395\pi\)
\(858\) −1.04523e19 −0.894427
\(859\) −2.05252e19 −1.74314 −0.871571 0.490269i \(-0.836899\pi\)
−0.871571 + 0.490269i \(0.836899\pi\)
\(860\) 3.16546e19 2.66807
\(861\) −2.72175e19 −2.27681
\(862\) −1.90845e19 −1.58447
\(863\) 2.82686e18 0.232935 0.116467 0.993195i \(-0.462843\pi\)
0.116467 + 0.993195i \(0.462843\pi\)
\(864\) 7.36407e19 6.02253
\(865\) 1.60547e19 1.30316
\(866\) 2.28512e19 1.84096
\(867\) −7.93903e18 −0.634810
\(868\) −7.66998e19 −6.08718
\(869\) 6.96749e18 0.548843
\(870\) −2.78587e19 −2.17814
\(871\) −2.48106e19 −1.92540
\(872\) 7.14511e19 5.50366
\(873\) −1.91439e18 −0.146365
\(874\) −2.04847e19 −1.55455
\(875\) 1.07946e19 0.813119
\(876\) 1.87396e19 1.40115
\(877\) 2.36214e19 1.75311 0.876554 0.481304i \(-0.159837\pi\)
0.876554 + 0.481304i \(0.159837\pi\)
\(878\) 2.08200e19 1.53379
\(879\) −4.08473e18 −0.298700
\(880\) 3.66149e19 2.65779
\(881\) 1.44046e19 1.03791 0.518953 0.854803i \(-0.326322\pi\)
0.518953 + 0.854803i \(0.326322\pi\)
\(882\) 2.64101e19 1.88897
\(883\) −5.10220e17 −0.0362254 −0.0181127 0.999836i \(-0.505766\pi\)
−0.0181127 + 0.999836i \(0.505766\pi\)
\(884\) 2.27240e19 1.60157
\(885\) −1.52650e19 −1.06798
\(886\) 2.16065e19 1.50060
\(887\) 2.00565e19 1.38278 0.691388 0.722483i \(-0.256999\pi\)
0.691388 + 0.722483i \(0.256999\pi\)
\(888\) 1.57698e19 1.07930
\(889\) −2.41119e19 −1.63821
\(890\) −1.61884e19 −1.09187
\(891\) 2.45052e18 0.164079
\(892\) −3.53985e19 −2.35295
\(893\) 1.54977e19 1.02267
\(894\) 1.61798e19 1.05994
\(895\) 3.25820e18 0.211898
\(896\) −1.93999e20 −12.5256
\(897\) 1.23080e19 0.788927
\(898\) 3.16230e19 2.01236
\(899\) 2.07713e19 1.31228
\(900\) −1.31827e19 −0.826855
\(901\) 8.32599e18 0.518471
\(902\) −2.37366e19 −1.46750
\(903\) −1.54180e19 −0.946364
\(904\) −5.05615e19 −3.08123
\(905\) −2.93393e19 −1.77515
\(906\) 5.63076e18 0.338247
\(907\) −6.20694e18 −0.370195 −0.185097 0.982720i \(-0.559260\pi\)
−0.185097 + 0.982720i \(0.559260\pi\)
\(908\) 4.20044e19 2.48735
\(909\) 7.27650e18 0.427816
\(910\) −1.07155e20 −6.25522
\(911\) 1.78419e19 1.03412 0.517062 0.855948i \(-0.327026\pi\)
0.517062 + 0.855948i \(0.327026\pi\)
\(912\) −6.37283e19 −3.66746
\(913\) −3.16465e18 −0.180828
\(914\) 2.39080e19 1.35642
\(915\) −2.17997e18 −0.122805
\(916\) −3.35701e19 −1.87773
\(917\) 3.19441e19 1.77415
\(918\) −1.53538e19 −0.846717
\(919\) 1.78621e18 0.0978099 0.0489049 0.998803i \(-0.484427\pi\)
0.0489049 + 0.998803i \(0.484427\pi\)
\(920\) −6.98500e19 −3.79792
\(921\) −2.12468e17 −0.0114711
\(922\) −5.56324e19 −2.98248
\(923\) −4.09839e19 −2.18174
\(924\) −3.26389e19 −1.72531
\(925\) −4.54506e18 −0.238571
\(926\) −5.22219e18 −0.272196
\(927\) −4.40837e18 −0.228171
\(928\) 1.23395e20 6.34214
\(929\) 7.35740e18 0.375511 0.187755 0.982216i \(-0.439879\pi\)
0.187755 + 0.982216i \(0.439879\pi\)
\(930\) −4.37006e19 −2.21487
\(931\) −4.45271e19 −2.24105
\(932\) 4.94469e18 0.247136
\(933\) 5.38805e18 0.267424
\(934\) −4.14051e19 −2.04079
\(935\) −4.50421e18 −0.220467
\(936\) −4.76446e19 −2.31590
\(937\) 4.43507e18 0.214089 0.107044 0.994254i \(-0.465861\pi\)
0.107044 + 0.994254i \(0.465861\pi\)
\(938\) −1.03724e20 −4.97234
\(939\) −3.31156e18 −0.157655
\(940\) 7.99238e19 3.77872
\(941\) −1.47756e19 −0.693766 −0.346883 0.937908i \(-0.612760\pi\)
−0.346883 + 0.937908i \(0.612760\pi\)
\(942\) 1.24905e19 0.582439
\(943\) 2.79508e19 1.29440
\(944\) 1.14596e20 5.27049
\(945\) 5.40785e19 2.47012
\(946\) −1.34462e19 −0.609968
\(947\) −1.40884e18 −0.0634726 −0.0317363 0.999496i \(-0.510104\pi\)
−0.0317363 + 0.999496i \(0.510104\pi\)
\(948\) −6.25401e19 −2.79837
\(949\) −1.95200e19 −0.867461
\(950\) 2.97562e19 1.31333
\(951\) 2.42160e18 0.106152
\(952\) 6.28137e19 2.73473
\(953\) 2.82781e18 0.122277 0.0611386 0.998129i \(-0.480527\pi\)
0.0611386 + 0.998129i \(0.480527\pi\)
\(954\) −2.64020e19 −1.13389
\(955\) 3.86629e18 0.164920
\(956\) −5.78215e18 −0.244970
\(957\) 8.83904e18 0.371944
\(958\) 6.86237e19 2.86813
\(959\) −3.82179e19 −1.58652
\(960\) −1.48259e20 −6.11306
\(961\) 8.16533e18 0.334404
\(962\) −2.48438e19 −1.01060
\(963\) −1.82961e19 −0.739246
\(964\) −1.10208e20 −4.42297
\(965\) 8.49033e18 0.338452
\(966\) 5.14552e19 2.03741
\(967\) −4.46149e19 −1.75472 −0.877360 0.479832i \(-0.840697\pi\)
−0.877360 + 0.479832i \(0.840697\pi\)
\(968\) 8.04791e19 3.14408
\(969\) 7.83959e18 0.304221
\(970\) 2.22848e19 0.859000
\(971\) −1.36662e19 −0.523267 −0.261634 0.965167i \(-0.584261\pi\)
−0.261634 + 0.965167i \(0.584261\pi\)
\(972\) 6.17190e19 2.34741
\(973\) 2.21398e19 0.836451
\(974\) −8.43135e19 −3.16420
\(975\) −1.78787e19 −0.666508
\(976\) 1.63653e19 0.606040
\(977\) 3.04745e19 1.12104 0.560520 0.828141i \(-0.310601\pi\)
0.560520 + 0.828141i \(0.310601\pi\)
\(978\) 1.83232e19 0.669575
\(979\) 5.13629e18 0.186450
\(980\) −2.29632e20 −8.28062
\(981\) 1.72043e19 0.616295
\(982\) −4.40793e19 −1.56859
\(983\) 4.75117e19 1.67959 0.839794 0.542905i \(-0.182676\pi\)
0.839794 + 0.542905i \(0.182676\pi\)
\(984\) 1.40874e20 4.94723
\(985\) −2.61921e18 −0.0913767
\(986\) −2.57274e19 −0.891652
\(987\) −3.89285e19 −1.34031
\(988\) 1.21490e20 4.15546
\(989\) 1.58334e19 0.538021
\(990\) 1.42830e19 0.482159
\(991\) −3.03259e19 −1.01703 −0.508517 0.861052i \(-0.669806\pi\)
−0.508517 + 0.861052i \(0.669806\pi\)
\(992\) 1.93564e20 6.44908
\(993\) 3.74447e19 1.23942
\(994\) −1.71338e20 −5.63434
\(995\) −4.81694e19 −1.57370
\(996\) 2.84059e19 0.921983
\(997\) −3.94393e19 −1.27178 −0.635889 0.771781i \(-0.719366\pi\)
−0.635889 + 0.771781i \(0.719366\pi\)
\(998\) 1.04349e20 3.34302
\(999\) 1.25381e19 0.399076
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.14.a.b.1.1 109
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.14.a.b.1.1 109 1.1 even 1 trivial