Properties

Label 197.14.a.b.1.1
Level 197197
Weight 1414
Character 197.1
Self dual yes
Analytic conductor 211.245211.245
Analytic rank 00
Dimension 109109
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,14,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: N N == 197 197
Weight: k k == 14 14
Character orbit: [χ][\chi] == 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 211.244930035211.244930035
Analytic rank: 00
Dimension: 109109
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Character χ\chi == 197.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q179.919q2+949.600q3+24179.0q444809.9q5170851.q6+555727.q72.87636e6q8692583.q9+8.06216e6q102.55797e6q11+2.29603e7q122.39165e7q139.99861e7q144.25515e7q15+3.19439e8q163.92961e7q17+1.24609e8q182.10089e8q191.08346e9q20+5.27719e8q21+4.60229e8q225.41937e8q232.73139e9q24+7.87221e8q25+4.30304e9q262.17165e9q27+1.34369e10q283.63889e9q29+7.65583e9q305.70814e9q313.39101e10q322.42905e9q33+7.07012e9q342.49021e10q351.67459e10q365.77354e9q37+3.77991e10q382.27111e10q39+1.28889e11q405.15758e10q419.49468e10q422.92164e10q436.18491e10q44+3.10345e10q45+9.75050e10q467.37675e10q47+3.03339e11q48+2.11944e11q491.41636e11q503.73155e10q515.78277e11q522.11878e11q53+3.90721e11q54+1.14622e11q551.59847e12q561.99501e11q57+6.54706e11q58+3.58741e11q591.02885e12q60+5.12315e10q61+1.02700e12q623.84887e11q63+3.48424e12q64+1.07170e12q65+4.37033e11q66+1.03738e12q679.50138e11q685.14624e11q69+4.48036e12q70+1.71362e12q71+1.99212e12q72+8.16173e11q73+1.03877e12q74+7.47545e11q755.07974e12q761.42154e12q77+4.08617e12q782.72383e12q791.43140e13q809.57995e11q81+9.27947e12q82+1.23717e12q83+1.27597e13q84+1.76085e12q85+5.25659e12q863.45549e12q87+7.35765e12q882.00795e12q895.58371e12q901.32911e13q911.31035e13q925.42045e12q93+1.32722e13q94+9.41407e12q953.22010e13q96+2.76413e12q973.81328e13q98+1.77161e12q99+O(q100)q-179.919 q^{2} +949.600 q^{3} +24179.0 q^{4} -44809.9 q^{5} -170851. q^{6} +555727. q^{7} -2.87636e6 q^{8} -692583. q^{9} +8.06216e6 q^{10} -2.55797e6 q^{11} +2.29603e7 q^{12} -2.39165e7 q^{13} -9.99861e7 q^{14} -4.25515e7 q^{15} +3.19439e8 q^{16} -3.92961e7 q^{17} +1.24609e8 q^{18} -2.10089e8 q^{19} -1.08346e9 q^{20} +5.27719e8 q^{21} +4.60229e8 q^{22} -5.41937e8 q^{23} -2.73139e9 q^{24} +7.87221e8 q^{25} +4.30304e9 q^{26} -2.17165e9 q^{27} +1.34369e10 q^{28} -3.63889e9 q^{29} +7.65583e9 q^{30} -5.70814e9 q^{31} -3.39101e10 q^{32} -2.42905e9 q^{33} +7.07012e9 q^{34} -2.49021e10 q^{35} -1.67459e10 q^{36} -5.77354e9 q^{37} +3.77991e10 q^{38} -2.27111e10 q^{39} +1.28889e11 q^{40} -5.15758e10 q^{41} -9.49468e10 q^{42} -2.92164e10 q^{43} -6.18491e10 q^{44} +3.10345e10 q^{45} +9.75050e10 q^{46} -7.37675e10 q^{47} +3.03339e11 q^{48} +2.11944e11 q^{49} -1.41636e11 q^{50} -3.73155e10 q^{51} -5.78277e11 q^{52} -2.11878e11 q^{53} +3.90721e11 q^{54} +1.14622e11 q^{55} -1.59847e12 q^{56} -1.99501e11 q^{57} +6.54706e11 q^{58} +3.58741e11 q^{59} -1.02885e12 q^{60} +5.12315e10 q^{61} +1.02700e12 q^{62} -3.84887e11 q^{63} +3.48424e12 q^{64} +1.07170e12 q^{65} +4.37033e11 q^{66} +1.03738e12 q^{67} -9.50138e11 q^{68} -5.14624e11 q^{69} +4.48036e12 q^{70} +1.71362e12 q^{71} +1.99212e12 q^{72} +8.16173e11 q^{73} +1.03877e12 q^{74} +7.47545e11 q^{75} -5.07974e12 q^{76} -1.42154e12 q^{77} +4.08617e12 q^{78} -2.72383e12 q^{79} -1.43140e13 q^{80} -9.57995e11 q^{81} +9.27947e12 q^{82} +1.23717e12 q^{83} +1.27597e13 q^{84} +1.76085e12 q^{85} +5.25659e12 q^{86} -3.45549e12 q^{87} +7.35765e12 q^{88} -2.00795e12 q^{89} -5.58371e12 q^{90} -1.32911e13 q^{91} -1.31035e13 q^{92} -5.42045e12 q^{93} +1.32722e13 q^{94} +9.41407e12 q^{95} -3.22010e13 q^{96} +2.76413e12 q^{97} -3.81328e13 q^{98} +1.77161e12 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 109q+192q2+8018q3+471040q4+88496q5+383232q6+1680731q7+1820859q8+59521391q9+16373653q10+21199298q11+63225856q12+59695238q13+37888529q14++12084396239183q99+O(q100) 109 q + 192 q^{2} + 8018 q^{3} + 471040 q^{4} + 88496 q^{5} + 383232 q^{6} + 1680731 q^{7} + 1820859 q^{8} + 59521391 q^{9} + 16373653 q^{10} + 21199298 q^{11} + 63225856 q^{12} + 59695238 q^{13} + 37888529 q^{14}+ \cdots + 12084396239183 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −179.919 −1.98785 −0.993923 0.110076i 0.964890π-0.964890\pi
−0.993923 + 0.110076i 0.964890π0.964890\pi
33 949.600 0.752060 0.376030 0.926607i 0.377289π-0.377289\pi
0.376030 + 0.926607i 0.377289π0.377289\pi
44 24179.0 2.95153
55 −44809.9 −1.28253 −0.641267 0.767318i 0.721591π-0.721591\pi
−0.641267 + 0.767318i 0.721591π0.721591\pi
66 −170851. −1.49498
77 555727. 1.78535 0.892677 0.450696i 0.148824π-0.148824\pi
0.892677 + 0.450696i 0.148824π0.148824\pi
88 −2.87636e6 −3.87935
99 −692583. −0.434405
1010 8.06216e6 2.54948
1111 −2.55797e6 −0.435355 −0.217677 0.976021i 0.569848π-0.569848\pi
−0.217677 + 0.976021i 0.569848π0.569848\pi
1212 2.29603e7 2.21973
1313 −2.39165e7 −1.37425 −0.687126 0.726538i 0.741128π-0.741128\pi
−0.687126 + 0.726538i 0.741128π0.741128\pi
1414 −9.99861e7 −3.54901
1515 −4.25515e7 −0.964542
1616 3.19439e8 4.76001
1717 −3.92961e7 −0.394849 −0.197425 0.980318i 0.563258π-0.563258\pi
−0.197425 + 0.980318i 0.563258π0.563258\pi
1818 1.24609e8 0.863531
1919 −2.10089e8 −1.02448 −0.512242 0.858841i 0.671185π-0.671185\pi
−0.512242 + 0.858841i 0.671185π0.671185\pi
2020 −1.08346e9 −3.78544
2121 5.27719e8 1.34269
2222 4.60229e8 0.865418
2323 −5.41937e8 −0.763340 −0.381670 0.924299i 0.624651π-0.624651\pi
−0.381670 + 0.924299i 0.624651π0.624651\pi
2424 −2.73139e9 −2.91750
2525 7.87221e8 0.644892
2626 4.30304e9 2.73180
2727 −2.17165e9 −1.07876
2828 1.34369e10 5.26953
2929 −3.63889e9 −1.13601 −0.568004 0.823026i 0.692284π-0.692284\pi
−0.568004 + 0.823026i 0.692284π0.692284\pi
3030 7.65583e9 1.91736
3131 −5.70814e9 −1.15516 −0.577582 0.816333i 0.696004π-0.696004\pi
−0.577582 + 0.816333i 0.696004π0.696004\pi
3232 −3.39101e10 −5.58283
3333 −2.42905e9 −0.327413
3434 7.07012e9 0.784899
3535 −2.49021e10 −2.28978
3636 −1.67459e10 −1.28216
3737 −5.77354e9 −0.369940 −0.184970 0.982744i 0.559219π-0.559219\pi
−0.184970 + 0.982744i 0.559219π0.559219\pi
3838 3.77991e10 2.03652
3939 −2.27111e10 −1.03352
4040 1.28889e11 4.97539
4141 −5.15758e10 −1.69571 −0.847853 0.530231i 0.822105π-0.822105\pi
−0.847853 + 0.530231i 0.822105π0.822105\pi
4242 −9.49468e10 −2.66907
4343 −2.92164e10 −0.704825 −0.352412 0.935845i 0.614639π-0.614639\pi
−0.352412 + 0.935845i 0.614639π0.614639\pi
4444 −6.18491e10 −1.28496
4545 3.10345e10 0.557139
4646 9.75050e10 1.51740
4747 −7.37675e10 −0.998226 −0.499113 0.866537i 0.666341π-0.666341\pi
−0.499113 + 0.866537i 0.666341π0.666341\pi
4848 3.03339e11 3.57982
4949 2.11944e11 2.18749
5050 −1.41636e11 −1.28195
5151 −3.73155e10 −0.296950
5252 −5.78277e11 −4.05615
5353 −2.11878e11 −1.31309 −0.656544 0.754288i 0.727982π-0.727982\pi
−0.656544 + 0.754288i 0.727982π0.727982\pi
5454 3.90721e11 2.14441
5555 1.14622e11 0.558357
5656 −1.59847e12 −6.92601
5757 −1.99501e11 −0.770474
5858 6.54706e11 2.25821
5959 3.58741e11 1.10724 0.553621 0.832768i 0.313245π-0.313245\pi
0.553621 + 0.832768i 0.313245π0.313245\pi
6060 −1.02885e12 −2.84688
6161 5.12315e10 0.127319 0.0636595 0.997972i 0.479723π-0.479723\pi
0.0636595 + 0.997972i 0.479723π0.479723\pi
6262 1.02700e12 2.29629
6363 −3.84887e11 −0.775568
6464 3.48424e12 6.33779
6565 1.07170e12 1.76252
6666 4.37033e11 0.650847
6767 1.03738e12 1.40105 0.700525 0.713628i 0.252949π-0.252949\pi
0.700525 + 0.713628i 0.252949π0.252949\pi
6868 −9.50138e11 −1.16541
6969 −5.14624e11 −0.574078
7070 4.48036e12 4.55172
7171 1.71362e12 1.58758 0.793791 0.608191i 0.208105π-0.208105\pi
0.793791 + 0.608191i 0.208105π0.208105\pi
7272 1.99212e12 1.68521
7373 8.16173e11 0.631224 0.315612 0.948888i 0.397790π-0.397790\pi
0.315612 + 0.948888i 0.397790π0.397790\pi
7474 1.03877e12 0.735384
7575 7.47545e11 0.484997
7676 −5.07974e12 −3.02380
7777 −1.42154e12 −0.777263
7878 4.08617e12 2.05448
7979 −2.72383e12 −1.26068 −0.630339 0.776320i 0.717084π-0.717084\pi
−0.630339 + 0.776320i 0.717084π0.717084\pi
8080 −1.43140e13 −6.10487
8181 −9.57995e11 −0.376886
8282 9.27947e12 3.37080
8383 1.23717e12 0.415358 0.207679 0.978197i 0.433409π-0.433409\pi
0.207679 + 0.978197i 0.433409π0.433409\pi
8484 1.27597e13 3.96301
8585 1.76085e12 0.506407
8686 5.25659e12 1.40108
8787 −3.45549e12 −0.854346
8888 7.35765e12 1.68889
8989 −2.00795e12 −0.428271 −0.214135 0.976804i 0.568693π-0.568693\pi
−0.214135 + 0.976804i 0.568693π0.568693\pi
9090 −5.58371e12 −1.10751
9191 −1.32911e13 −2.45353
9292 −1.31035e13 −2.25302
9393 −5.42045e12 −0.868753
9494 1.32722e13 1.98432
9595 9.41407e12 1.31393
9696 −3.22010e13 −4.19862
9797 2.76413e12 0.336932 0.168466 0.985708i 0.446119π-0.446119\pi
0.168466 + 0.985708i 0.446119π0.446119\pi
9898 −3.81328e13 −4.34840
9999 1.77161e12 0.189121
100100 1.90342e13 1.90342
101101 −1.05063e13 −0.984831 −0.492416 0.870360i 0.663886π-0.663886\pi
−0.492416 + 0.870360i 0.663886π0.663886\pi
102102 6.71379e12 0.590291
103103 6.36512e12 0.525248 0.262624 0.964898i 0.415412π-0.415412\pi
0.262624 + 0.964898i 0.415412π0.415412\pi
104104 6.87926e13 5.33120
105105 −2.36470e13 −1.72205
106106 3.81210e13 2.61022
107107 2.64173e13 1.70174 0.850871 0.525375i 0.176075π-0.176075\pi
0.850871 + 0.525375i 0.176075π0.176075\pi
108108 −5.25081e13 −3.18399
109109 −2.48408e13 −1.41871 −0.709354 0.704852i 0.751013π-0.751013\pi
−0.709354 + 0.704852i 0.751013π0.751013\pi
110110 −2.06228e13 −1.10993
111111 −5.48256e12 −0.278217
112112 1.77521e14 8.49831
113113 1.75783e13 0.794266 0.397133 0.917761i 0.370005π-0.370005\pi
0.397133 + 0.917761i 0.370005π0.370005\pi
114114 3.58940e13 1.53158
115115 2.42841e13 0.979009
116116 −8.79845e13 −3.35296
117117 1.65642e13 0.596982
118118 −6.45444e13 −2.20103
119119 −2.18379e13 −0.704946
120120 1.22393e14 3.74179
121121 −2.79795e13 −0.810466
122122 −9.21753e12 −0.253091
123123 −4.89763e13 −1.27527
124124 −1.38017e14 −3.40950
125125 1.94243e13 0.455438
126126 6.92486e13 1.54171
127127 −4.33881e13 −0.917584 −0.458792 0.888544i 0.651718π-0.651718\pi
−0.458792 + 0.888544i 0.651718π0.651718\pi
128128 −3.49090e14 −7.01572
129129 −2.77439e13 −0.530071
130130 −1.92819e14 −3.50363
131131 5.74817e13 0.993724 0.496862 0.867829i 0.334485π-0.334485\pi
0.496862 + 0.867829i 0.334485π0.334485\pi
132132 −5.87319e13 −0.966370
133133 −1.16752e14 −1.82907
134134 −1.86646e14 −2.78507
135135 9.73112e13 1.38354
136136 1.13030e14 1.53176
137137 −6.87709e13 −0.888631 −0.444315 0.895870i 0.646553π-0.646553\pi
−0.444315 + 0.895870i 0.646553π0.646553\pi
138138 9.25907e13 1.14118
139139 3.98393e13 0.468507 0.234253 0.972176i 0.424735π-0.424735\pi
0.234253 + 0.972176i 0.424735π0.424735\pi
140140 −6.02106e14 −6.75835
141141 −7.00496e13 −0.750726
142142 −3.08314e14 −3.15587
143143 6.11778e13 0.598287
144144 −2.21238e14 −2.06778
145145 1.63058e14 1.45697
146146 −1.46845e14 −1.25478
147147 2.01262e14 1.64513
148148 −1.39598e14 −1.09189
149149 −9.47011e13 −0.708997 −0.354498 0.935057i 0.615348π-0.615348\pi
−0.354498 + 0.935057i 0.615348π0.615348\pi
150150 −1.34498e14 −0.964100
151151 −3.29571e13 −0.226255 −0.113127 0.993580i 0.536087π-0.536087\pi
−0.113127 + 0.993580i 0.536087π0.536087\pi
152152 6.04292e14 3.97433
153153 2.72158e13 0.171525
154154 2.55762e14 1.54508
155155 2.55781e14 1.48154
156156 −5.49132e14 −3.05047
157157 −7.31077e13 −0.389597 −0.194798 0.980843i 0.562405π-0.562405\pi
−0.194798 + 0.980843i 0.562405π0.562405\pi
158158 4.90070e14 2.50604
159159 −2.01200e14 −0.987521
160160 1.51951e15 7.16016
161161 −3.01169e14 −1.36283
162162 1.72362e14 0.749192
163163 −1.07246e14 −0.447882 −0.223941 0.974603i 0.571892π-0.571892\pi
−0.223941 + 0.974603i 0.571892π0.571892\pi
164164 −1.24705e15 −5.00493
165165 1.08845e14 0.419918
166166 −2.22591e14 −0.825668
167167 −1.01900e14 −0.363512 −0.181756 0.983344i 0.558178π-0.558178\pi
−0.181756 + 0.983344i 0.558178π0.558178\pi
168168 −1.51791e15 −5.20878
169169 2.69125e14 0.888568
170170 −3.16811e14 −1.00666
171171 1.45504e14 0.445041
172172 −7.06421e14 −2.08031
173173 −3.58284e14 −1.01608 −0.508040 0.861334i 0.669630π-0.669630\pi
−0.508040 + 0.861334i 0.669630π0.669630\pi
174174 6.21709e14 1.69831
175175 4.37480e14 1.15136
176176 −8.17116e14 −2.07229
177177 3.40660e14 0.832713
178178 3.61270e14 0.851337
179179 −7.27116e13 −0.165219 −0.0826093 0.996582i 0.526325π-0.526325\pi
−0.0826093 + 0.996582i 0.526325π0.526325\pi
180180 7.50383e14 1.64442
181181 6.54752e14 1.38410 0.692048 0.721852i 0.256709π-0.256709\pi
0.692048 + 0.721852i 0.256709π0.256709\pi
182182 2.39132e15 4.87724
183183 4.86494e13 0.0957515
184184 1.55881e15 2.96126
185185 2.58712e14 0.474460
186186 9.75244e14 1.72695
187187 1.00518e14 0.171899
188188 −1.78362e15 −2.94630
189189 −1.20684e15 −1.92597
190190 −1.69377e15 −2.61190
191191 −8.62822e13 −0.128589 −0.0642946 0.997931i 0.520480π-0.520480\pi
−0.0642946 + 0.997931i 0.520480π0.520480\pi
192192 3.30863e15 4.76640
193193 −1.89475e14 −0.263893 −0.131947 0.991257i 0.542123π-0.542123\pi
−0.131947 + 0.991257i 0.542123π0.542123\pi
194194 −4.97320e14 −0.669768
195195 1.01768e15 1.32552
196196 5.12458e15 6.45646
197197 5.84517e13 0.0712470
198198 −3.18746e14 −0.375942
199199 1.07497e15 1.22702 0.613511 0.789686i 0.289757π-0.289757\pi
0.613511 + 0.789686i 0.289757π0.289757\pi
200200 −2.26433e15 −2.50176
201201 9.85101e14 1.05367
202202 1.89029e15 1.95769
203203 −2.02223e15 −2.02818
204204 −9.02251e14 −0.876458
205205 2.31110e15 2.17480
206206 −1.14521e15 −1.04411
207207 3.75336e14 0.331599
208208 −7.63987e15 −6.54146
209209 5.37402e14 0.446014
210210 4.25455e15 3.42317
211211 2.40819e15 1.87868 0.939342 0.342981i 0.111437π-0.111437\pi
0.939342 + 0.342981i 0.111437π0.111437\pi
212212 −5.12300e15 −3.87562
213213 1.62726e15 1.19396
214214 −4.75298e15 −3.38280
215215 1.30918e15 0.903961
216216 6.24644e15 4.18488
217217 −3.17217e15 −2.06238
218218 4.46934e15 2.82017
219219 7.75038e14 0.474719
220220 2.77145e15 1.64801
221221 9.39825e14 0.542622
222222 9.86418e14 0.553053
223223 −1.46402e15 −0.797197 −0.398599 0.917126i 0.630503π-0.630503\pi
−0.398599 + 0.917126i 0.630503π0.630503\pi
224224 −1.88448e16 −9.96733
225225 −5.45216e14 −0.280144
226226 −3.16267e15 −1.57888
227227 1.73723e15 0.842731 0.421365 0.906891i 0.361551π-0.361551\pi
0.421365 + 0.906891i 0.361551π0.361551\pi
228228 −4.82372e15 −2.27408
229229 −1.38840e15 −0.636187 −0.318093 0.948059i 0.603043π-0.603043\pi
−0.318093 + 0.948059i 0.603043π0.603043\pi
230230 −4.36918e15 −1.94612
231231 −1.34989e15 −0.584548
232232 1.04668e16 4.40697
233233 2.04504e14 0.0837313 0.0418657 0.999123i 0.486670π-0.486670\pi
0.0418657 + 0.999123i 0.486670π0.486670\pi
234234 −2.98021e15 −1.18671
235235 3.30551e15 1.28026
236236 8.67398e15 3.26806
237237 −2.58655e15 −0.948106
238238 3.92906e15 1.40132
239239 −2.39140e14 −0.0829976 −0.0414988 0.999139i 0.513213π-0.513213\pi
−0.0414988 + 0.999139i 0.513213π0.513213\pi
240240 −1.35926e16 −4.59123
241241 −4.55803e15 −1.49853 −0.749267 0.662268i 0.769594π-0.769594\pi
−0.749267 + 0.662268i 0.769594π0.769594\pi
242242 5.03405e15 1.61108
243243 2.55259e15 0.795318
244244 1.23872e15 0.375786
245245 −9.49718e15 −2.80553
246246 8.81179e15 2.53505
247247 5.02460e15 1.40790
248248 1.64187e16 4.48128
249249 1.17482e15 0.312374
250250 −3.49480e15 −0.905341
251251 −3.34116e15 −0.843370 −0.421685 0.906742i 0.638561π-0.638561\pi
−0.421685 + 0.906742i 0.638561π0.638561\pi
252252 −9.30617e15 −2.28911
253253 1.38626e15 0.332324
254254 7.80635e15 1.82402
255255 1.67210e15 0.380849
256256 3.42651e16 7.60839
257257 −3.94292e15 −0.853597 −0.426798 0.904347i 0.640359π-0.640359\pi
−0.426798 + 0.904347i 0.640359π0.640359\pi
258258 4.99165e15 1.05370
259259 −3.20852e15 −0.660474
260260 2.59125e16 5.20215
261261 2.52023e15 0.493488
262262 −1.03421e16 −1.97537
263263 −8.18969e15 −1.52600 −0.763001 0.646398i 0.776275π-0.776275\pi
−0.763001 + 0.646398i 0.776275π0.776275\pi
264264 6.98683e15 1.27015
265265 9.49425e15 1.68408
266266 2.10060e16 3.63591
267267 −1.90675e15 −0.322086
268268 2.50829e16 4.13524
269269 −2.24633e15 −0.361480 −0.180740 0.983531i 0.557849π-0.557849\pi
−0.180740 + 0.983531i 0.557849π0.557849\pi
270270 −1.75082e16 −2.75027
271271 −6.38241e15 −0.978779 −0.489389 0.872065i 0.662780π-0.662780\pi
−0.489389 + 0.872065i 0.662780π0.662780\pi
272272 −1.25527e16 −1.87949
273273 −1.26212e16 −1.84520
274274 1.23732e16 1.76646
275275 −2.01369e15 −0.280757
276276 −1.24431e16 −1.69441
277277 −1.21980e16 −1.62244 −0.811221 0.584739i 0.801197π-0.801197\pi
−0.811221 + 0.584739i 0.801197π0.801197\pi
278278 −7.16786e15 −0.931319
279279 3.95336e15 0.501810
280280 7.16274e16 8.88284
281281 1.40647e16 1.70428 0.852138 0.523317i 0.175305π-0.175305\pi
0.852138 + 0.523317i 0.175305π0.175305\pi
282282 1.26033e16 1.49233
283283 −8.61075e15 −0.996390 −0.498195 0.867065i 0.666004π-0.666004\pi
−0.498195 + 0.867065i 0.666004π0.666004\pi
284284 4.14336e16 4.68580
285285 8.93960e15 0.988158
286286 −1.10071e16 −1.18930
287287 −2.86621e16 −3.02744
288288 2.34855e16 2.42521
289289 −8.36040e15 −0.844094
290290 −2.93373e16 −2.89623
291291 2.62482e15 0.253393
292292 1.97342e16 1.86308
293293 −4.30153e15 −0.397176 −0.198588 0.980083i 0.563636π-0.563636\pi
−0.198588 + 0.980083i 0.563636π0.563636\pi
294294 −3.62109e16 −3.27026
295295 −1.60751e16 −1.42008
296296 1.66068e16 1.43513
297297 5.55501e15 0.469643
298298 1.70386e16 1.40938
299299 1.29613e16 1.04902
300300 1.80749e16 1.43149
301301 −1.62363e16 −1.25836
302302 5.92961e15 0.449760
303303 −9.97681e15 −0.740652
304304 −6.71107e16 −4.87656
305305 −2.29568e15 −0.163291
306306 −4.89664e15 −0.340964
307307 −2.23744e14 −0.0152529 −0.00762646 0.999971i 0.502428π-0.502428\pi
−0.00762646 + 0.999971i 0.502428π0.502428\pi
308308 −3.43712e16 −2.29412
309309 6.04432e15 0.395018
310310 −4.60200e16 −2.94507
311311 5.67402e15 0.355589 0.177795 0.984068i 0.443104π-0.443104\pi
0.177795 + 0.984068i 0.443104π0.443104\pi
312312 6.53255e16 4.00938
313313 −3.48732e15 −0.209630 −0.104815 0.994492i 0.533425π-0.533425\pi
−0.104815 + 0.994492i 0.533425π0.533425\pi
314314 1.31535e16 0.774458
315315 1.72467e16 0.994692
316316 −6.58594e16 −3.72093
317317 2.55013e15 0.141149 0.0705743 0.997507i 0.477517π-0.477517\pi
0.0705743 + 0.997507i 0.477517π0.477517\pi
318318 3.61997e16 1.96304
319319 9.30817e15 0.494567
320320 −1.56128e17 −8.12842
321321 2.50859e16 1.27981
322322 5.41862e16 2.70910
323323 8.25568e15 0.404516
324324 −2.31633e16 −1.11239
325325 −1.88276e16 −0.886243
326326 1.92957e16 0.890321
327327 −2.35888e16 −1.06695
328328 1.48351e17 6.57823
329329 −4.09946e16 −1.78219
330330 −1.95834e16 −0.834733
331331 3.94321e16 1.64804 0.824019 0.566562i 0.191727π-0.191727\pi
0.824019 + 0.566562i 0.191727π0.191727\pi
332332 2.99135e16 1.22594
333333 3.99866e15 0.160704
334334 1.83338e16 0.722605
335335 −4.64851e16 −1.79689
336336 1.68574e17 6.39124
337337 1.07163e16 0.398520 0.199260 0.979947i 0.436146π-0.436146\pi
0.199260 + 0.979947i 0.436146π0.436146\pi
338338 −4.84208e16 −1.76634
339339 1.66923e16 0.597336
340340 4.25755e16 1.49468
341341 1.46013e16 0.502906
342342 −2.61790e16 −0.884674
343343 6.39392e16 2.12010
344344 8.40368e16 2.73426
345345 2.30602e16 0.736274
346346 6.44622e16 2.01981
347347 −2.18057e16 −0.670547 −0.335273 0.942121i 0.608829π-0.608829\pi
−0.335273 + 0.942121i 0.608829π0.608829\pi
348348 −8.35500e16 −2.52163
349349 5.38017e16 1.59379 0.796895 0.604118i 0.206475π-0.206475\pi
0.796895 + 0.604118i 0.206475π0.206475\pi
350350 −7.87112e16 −2.28873
351351 5.19382e16 1.48249
352352 8.67411e16 2.43051
353353 5.29552e16 1.45671 0.728355 0.685200i 0.240285π-0.240285\pi
0.728355 + 0.685200i 0.240285π0.240285\pi
354354 −6.12914e16 −1.65531
355355 −7.67872e16 −2.03613
356356 −4.85502e16 −1.26406
357357 −2.07373e16 −0.530162
358358 1.30822e16 0.328429
359359 −2.11409e16 −0.521206 −0.260603 0.965446i 0.583921π-0.583921\pi
−0.260603 + 0.965446i 0.583921π0.583921\pi
360360 −8.92666e16 −2.16134
361361 2.08446e15 0.0495674
362362 −1.17803e17 −2.75137
363363 −2.65693e16 −0.609519
364364 −3.21364e17 −7.24167
365365 −3.65726e16 −0.809566
366366 −8.75297e15 −0.190339
367367 1.72307e15 0.0368106 0.0184053 0.999831i 0.494141π-0.494141\pi
0.0184053 + 0.999831i 0.494141π0.494141\pi
368368 −1.73116e17 −3.63351
369369 3.57205e16 0.736624
370370 −4.65472e16 −0.943154
371371 −1.17747e17 −2.34433
372372 −1.31061e17 −2.56415
373373 3.67155e16 0.705899 0.352949 0.935642i 0.385179π-0.385179\pi
0.352949 + 0.935642i 0.385179π0.385179\pi
374374 −1.80852e16 −0.341710
375375 1.84453e16 0.342517
376376 2.12182e17 3.87247
377377 8.70295e16 1.56116
378378 2.17134e17 3.82853
379379 2.67731e16 0.464028 0.232014 0.972712i 0.425468π-0.425468\pi
0.232014 + 0.972712i 0.425468π0.425468\pi
380380 2.27622e17 3.87812
381381 −4.12013e16 −0.690079
382382 1.55238e16 0.255615
383383 −1.85352e16 −0.300058 −0.150029 0.988682i 0.547937π-0.547937\pi
−0.150029 + 0.988682i 0.547937π0.547937\pi
384384 −3.31496e17 −5.27624
385385 6.36988e16 0.996866
386386 3.40901e16 0.524579
387387 2.02347e16 0.306180
388388 6.68337e16 0.994465
389389 1.15175e17 1.68533 0.842666 0.538437i 0.180985π-0.180985\pi
0.842666 + 0.538437i 0.180985π0.180985\pi
390390 −1.83101e17 −2.63494
391391 2.12960e16 0.301404
392392 −6.09628e17 −8.48604
393393 5.45846e16 0.747341
394394 −1.05166e16 −0.141628
395395 1.22055e17 1.61686
396396 4.28356e16 0.558195
397397 −9.98843e15 −0.128044 −0.0640219 0.997948i 0.520393π-0.520393\pi
−0.0640219 + 0.997948i 0.520393π0.520393\pi
398398 −1.93408e17 −2.43913
399399 −1.10868e17 −1.37557
400400 2.51469e17 3.06969
401401 1.08698e16 0.130552 0.0652761 0.997867i 0.479207π-0.479207\pi
0.0652761 + 0.997867i 0.479207π0.479207\pi
402402 −1.77239e17 −2.09454
403403 1.36519e17 1.58749
404404 −2.54032e17 −2.90676
405405 4.29276e16 0.483369
406406 3.63838e17 4.03171
407407 1.47686e16 0.161055
408408 1.07333e17 1.15197
409409 2.72337e16 0.287677 0.143838 0.989601i 0.454055π-0.454055\pi
0.143838 + 0.989601i 0.454055π0.454055\pi
410410 −4.15812e17 −4.32317
411411 −6.53049e16 −0.668304
412412 1.53902e17 1.55029
413413 1.99362e17 1.97682
414414 −6.75302e16 −0.659168
415415 −5.54375e16 −0.532710
416416 8.11012e17 7.67221
417417 3.78314e16 0.352345
418418 −9.66890e16 −0.886607
419419 −7.15857e16 −0.646302 −0.323151 0.946347i 0.604742π-0.604742\pi
−0.323151 + 0.946347i 0.604742π0.604742\pi
420420 −5.71760e17 −5.08269
421421 −1.30140e17 −1.13914 −0.569568 0.821944i 0.692890π-0.692890\pi
−0.569568 + 0.821944i 0.692890π0.692890\pi
422422 −4.33279e17 −3.73454
423423 5.10901e16 0.433635
424424 6.09439e17 5.09392
425425 −3.09347e16 −0.254635
426426 −2.92775e17 −2.37340
427427 2.84707e16 0.227310
428428 6.38742e17 5.02275
429429 5.80945e16 0.449948
430430 −2.35547e17 −1.79694
431431 1.06072e17 0.797077 0.398539 0.917152i 0.369518π-0.369518\pi
0.398539 + 0.917152i 0.369518π0.369518\pi
432432 −6.93708e17 −5.13491
433433 −1.27008e17 −0.926105 −0.463053 0.886331i 0.653246π-0.653246\pi
−0.463053 + 0.886331i 0.653246π0.653246\pi
434434 5.70735e17 4.09969
435435 1.54840e17 1.09573
436436 −6.00624e17 −4.18736
437437 1.13855e17 0.782030
438438 −1.39444e17 −0.943668
439439 −1.15719e17 −0.771585 −0.385793 0.922585i 0.626072π-0.626072\pi
−0.385793 + 0.922585i 0.626072π0.626072\pi
440440 −3.29695e17 −2.16606
441441 −1.46789e17 −0.950259
442442 −1.69093e17 −1.07865
443443 −1.20090e17 −0.754887 −0.377444 0.926033i 0.623197π-0.623197\pi
−0.377444 + 0.926033i 0.623197π0.623197\pi
444444 −1.32563e17 −0.821167
445445 8.99761e16 0.549272
446446 2.63406e17 1.58471
447447 −8.99282e16 −0.533208
448448 1.93629e18 11.3152
449449 −1.75762e17 −1.01233 −0.506167 0.862436i 0.668938π-0.668938\pi
−0.506167 + 0.862436i 0.668938π0.668938\pi
450450 9.80948e16 0.556884
451451 1.31929e17 0.738234
452452 4.25024e17 2.34430
453453 −3.12960e16 −0.170157
454454 −3.12561e17 −1.67522
455455 5.95571e17 3.14673
456456 5.73836e17 2.98893
457457 −1.32882e17 −0.682354 −0.341177 0.939999i 0.610826π-0.610826\pi
−0.341177 + 0.939999i 0.610826π0.610826\pi
458458 2.49800e17 1.26464
459459 8.53371e16 0.425947
460460 5.87165e17 2.88958
461461 3.09208e17 1.50036 0.750178 0.661236i 0.229968π-0.229968\pi
0.750178 + 0.661236i 0.229968π0.229968\pi
462462 2.42871e17 1.16199
463463 2.90252e16 0.136930 0.0684649 0.997654i 0.478190π-0.478190\pi
0.0684649 + 0.997654i 0.478190π0.478190\pi
464464 −1.16240e18 −5.40741
465465 2.42890e17 1.11420
466466 −3.67942e16 −0.166445
467467 2.30131e17 1.02664 0.513318 0.858199i 0.328416π-0.328416\pi
0.513318 + 0.858199i 0.328416π0.328416\pi
468468 4.00504e17 1.76201
469469 5.76503e17 2.50137
470470 −5.94725e17 −2.54496
471471 −6.94231e16 −0.293000
472472 −1.03187e18 −4.29538
473473 7.47346e16 0.306849
474474 4.65371e17 1.88469
475475 −1.65387e17 −0.660681
476476 −5.28018e17 −2.08067
477477 1.46743e17 0.570412
478478 4.30259e16 0.164987
479479 −3.81414e17 −1.44283 −0.721415 0.692503i 0.756508π-0.756508\pi
−0.721415 + 0.692503i 0.756508π0.756508\pi
480480 1.44292e18 5.38487
481481 1.38083e17 0.508391
482482 8.20078e17 2.97886
483483 −2.85990e17 −1.02493
484484 −6.76515e17 −2.39212
485485 −1.23860e17 −0.432126
486486 −4.59261e17 −1.58097
487487 4.68618e17 1.59177 0.795886 0.605446i 0.207005π-0.207005\pi
0.795886 + 0.605446i 0.207005π0.207005\pi
488488 −1.47360e17 −0.493914
489489 −1.01841e17 −0.336834
490490 1.70873e18 5.57697
491491 2.44995e17 0.789092 0.394546 0.918876i 0.370902π-0.370902\pi
0.394546 + 0.918876i 0.370902π0.370902\pi
492492 −1.18420e18 −3.76401
493493 1.42994e17 0.448552
494494 −9.04023e17 −2.79869
495495 −7.93855e16 −0.242553
496496 −1.82340e18 −5.49860
497497 9.52307e17 2.83440
498498 −2.11373e17 −0.620952
499499 −5.79975e17 −1.68173 −0.840864 0.541247i 0.817952π-0.817952\pi
−0.840864 + 0.541247i 0.817952π0.817952\pi
500500 4.69659e17 1.34424
501501 −9.67645e16 −0.273383
502502 6.01139e17 1.67649
503503 −1.22373e17 −0.336894 −0.168447 0.985711i 0.553875π-0.553875\pi
−0.168447 + 0.985711i 0.553875π0.553875\pi
504504 1.10707e18 3.00870
505505 4.70787e17 1.26308
506506 −2.49415e17 −0.660608
507507 2.55561e17 0.668257
508508 −1.04908e18 −2.70828
509509 −1.55692e17 −0.396827 −0.198413 0.980118i 0.563579π-0.563579\pi
−0.198413 + 0.980118i 0.563579π0.563579\pi
510510 −3.00844e17 −0.757068
511511 4.53570e17 1.12696
512512 −3.30522e18 −8.10858
513513 4.56239e17 1.10517
514514 7.09408e17 1.69682
515515 −2.85220e17 −0.673649
516516 −6.70817e17 −1.56452
517517 1.88695e17 0.434583
518518 5.77274e17 1.31292
519519 −3.40226e17 −0.764153
520520 −3.08259e18 −6.83744
521521 −3.93047e17 −0.860992 −0.430496 0.902592i 0.641661π-0.641661\pi
−0.430496 + 0.902592i 0.641661π0.641661\pi
522522 −4.53438e17 −0.980978
523523 9.83337e16 0.210107 0.105054 0.994467i 0.466499π-0.466499\pi
0.105054 + 0.994467i 0.466499π0.466499\pi
524524 1.38985e18 2.93301
525525 4.15431e17 0.865892
526526 1.47348e18 3.03346
527527 2.24307e17 0.456115
528528 −7.75934e17 −1.55849
529529 −2.10340e17 −0.417312
530530 −1.70820e18 −3.34769
531531 −2.48458e17 −0.480992
532532 −2.82295e18 −5.39855
533533 1.23351e18 2.33033
534534 3.43062e17 0.640257
535535 −1.18375e18 −2.18254
536536 −2.98389e18 −5.43516
537537 −6.90469e16 −0.124254
538538 4.04159e17 0.718567
539539 −5.42147e17 −0.952335
540540 2.35288e18 4.08358
541541 −6.47497e17 −1.11034 −0.555169 0.831737i 0.687347π-0.687347\pi
−0.555169 + 0.831737i 0.687347π0.687347\pi
542542 1.14832e18 1.94566
543543 6.21753e17 1.04092
544544 1.33253e18 2.20437
545545 1.11311e18 1.81954
546546 2.27080e18 3.66797
547547 1.09348e18 1.74540 0.872699 0.488258i 0.162367π-0.162367\pi
0.872699 + 0.488258i 0.162367π0.162367\pi
548548 −1.66281e18 −2.62282
549549 −3.54820e16 −0.0553080
550550 3.62302e17 0.558101
551551 7.64490e17 1.16382
552552 1.48024e18 2.22705
553553 −1.51371e18 −2.25076
554554 2.19465e18 3.22517
555555 2.45673e17 0.356823
556556 9.63273e17 1.38281
557557 −3.99173e17 −0.566373 −0.283187 0.959065i 0.591392π-0.591392\pi
−0.283187 + 0.959065i 0.591392π0.591392\pi
558558 −7.11286e17 −0.997520
559559 6.98754e17 0.968606
560560 −7.95469e18 −10.8994
561561 9.54521e16 0.129279
562562 −2.53052e18 −3.38784
563563 −1.22152e18 −1.61658 −0.808289 0.588786i 0.799606π-0.799606\pi
−0.808289 + 0.588786i 0.799606π0.799606\pi
564564 −1.69373e18 −2.21579
565565 −7.87680e17 −1.01867
566566 1.54924e18 1.98067
567567 −5.32384e17 −0.672876
568568 −4.92900e18 −6.15878
569569 −1.25761e18 −1.55352 −0.776758 0.629799i 0.783137π-0.783137\pi
−0.776758 + 0.629799i 0.783137π0.783137\pi
570570 −1.60841e18 −1.96431
571571 −5.65025e16 −0.0682234 −0.0341117 0.999418i 0.510860π-0.510860\pi
−0.0341117 + 0.999418i 0.510860π0.510860\pi
572572 1.47922e18 1.76586
573573 −8.19336e16 −0.0967068
574574 5.15686e18 6.01808
575575 −4.26624e17 −0.492272
576576 −2.41312e18 −2.75317
577577 3.40172e17 0.383757 0.191878 0.981419i 0.438542π-0.438542\pi
0.191878 + 0.981419i 0.438542π0.438542\pi
578578 1.50420e18 1.67793
579579 −1.79925e17 −0.198464
580580 3.94257e18 4.30029
581581 6.87531e17 0.741561
582582 −4.72255e17 −0.503706
583583 5.41979e17 0.571659
584584 −2.34761e18 −2.44874
585585 −7.42238e17 −0.765650
586586 7.73928e17 0.789525
587587 2.21946e17 0.223923 0.111962 0.993713i 0.464287π-0.464287\pi
0.111962 + 0.993713i 0.464287π0.464287\pi
588588 4.86631e18 4.85564
589589 1.19922e18 1.18345
590590 2.89223e18 2.82289
591591 5.55058e16 0.0535821
592592 −1.84430e18 −1.76092
593593 6.07196e17 0.573421 0.286710 0.958017i 0.407438π-0.407438\pi
0.286710 + 0.958017i 0.407438π0.407438\pi
594594 −9.99453e17 −0.933578
595595 9.78553e17 0.904116
596596 −2.28977e18 −2.09263
597597 1.02079e18 0.922794
598598 −2.33198e18 −2.08529
599599 −5.09986e17 −0.451111 −0.225556 0.974230i 0.572420π-0.572420\pi
−0.225556 + 0.974230i 0.572420π0.572420\pi
600600 −2.15021e18 −1.88147
601601 −1.49306e18 −1.29239 −0.646196 0.763171i 0.723641π-0.723641\pi
−0.646196 + 0.763171i 0.723641π0.723641\pi
602602 2.92123e18 2.50143
603603 −7.18475e17 −0.608624
604604 −7.96867e17 −0.667799
605605 1.25376e18 1.03945
606606 1.79502e18 1.47230
607607 1.36674e18 1.10907 0.554534 0.832161i 0.312897π-0.312897\pi
0.554534 + 0.832161i 0.312897π0.312897\pi
608608 7.12414e18 5.71952
609609 −1.92031e18 −1.52531
610610 4.13036e17 0.324597
611611 1.76426e18 1.37181
612612 6.58049e17 0.506260
613613 9.93340e17 0.756144 0.378072 0.925776i 0.376587π-0.376587\pi
0.378072 + 0.925776i 0.376587π0.376587\pi
614614 4.02559e16 0.0303204
615615 2.19462e18 1.63558
616616 4.08885e18 3.01527
617617 1.42569e18 1.04033 0.520165 0.854066i 0.325870π-0.325870\pi
0.520165 + 0.854066i 0.325870π0.325870\pi
618618 −1.08749e18 −0.785236
619619 −2.09244e18 −1.49508 −0.747540 0.664217i 0.768765π-0.768765\pi
−0.747540 + 0.664217i 0.768765π0.768765\pi
620620 6.18452e18 4.37280
621621 1.17690e18 0.823460
622622 −1.02087e18 −0.706857
623623 −1.11587e18 −0.764616
624624 −7.25482e18 −4.91957
625625 −1.83136e18 −1.22901
626626 6.27437e17 0.416713
627627 5.10317e17 0.335429
628628 −1.76767e18 −1.14991
629629 2.26878e17 0.146070
630630 −3.10302e18 −1.97729
631631 −7.86264e17 −0.495881 −0.247941 0.968775i 0.579754π-0.579754\pi
−0.247941 + 0.968775i 0.579754π0.579754\pi
632632 7.83473e18 4.89061
633633 2.28681e18 1.41288
634634 −4.58817e17 −0.280582
635635 1.94421e18 1.17683
636636 −4.86480e18 −2.91470
637637 −5.06896e18 −3.00617
638638 −1.67472e18 −0.983122
639639 −1.18683e18 −0.689654
640640 1.56427e19 8.99790
641641 3.27038e18 1.86217 0.931087 0.364796i 0.118861π-0.118861\pi
0.931087 + 0.364796i 0.118861π0.118861\pi
642642 −4.51343e18 −2.54407
643643 −3.06098e18 −1.70800 −0.854002 0.520270i 0.825831π-0.825831\pi
−0.854002 + 0.520270i 0.825831π0.825831\pi
644644 −7.28196e18 −4.02245
645645 1.24320e18 0.679833
646646 −1.48536e18 −0.804117
647647 −1.53058e18 −0.820309 −0.410155 0.912016i 0.634525π-0.634525\pi
−0.410155 + 0.912016i 0.634525π0.634525\pi
648648 2.75554e18 1.46207
649649 −9.17649e17 −0.482044
650650 3.38745e18 1.76172
651651 −3.01229e18 −1.55103
652652 −2.59311e18 −1.32194
653653 −1.57615e18 −0.795537 −0.397769 0.917486i 0.630215π-0.630215\pi
−0.397769 + 0.917486i 0.630215π0.630215\pi
654654 4.24408e18 2.12094
655655 −2.57575e18 −1.27448
656656 −1.64753e19 −8.07158
657657 −5.65267e17 −0.274207
658658 7.37572e18 3.54272
659659 2.49587e18 1.18705 0.593523 0.804817i 0.297737π-0.297737\pi
0.593523 + 0.804817i 0.297737π0.297737\pi
660660 2.63177e18 1.23940
661661 3.73226e18 1.74045 0.870227 0.492651i 0.163972π-0.163972\pi
0.870227 + 0.492651i 0.163972π0.163972\pi
662662 −7.09459e18 −3.27605
663663 8.92458e17 0.408084
664664 −3.55856e18 −1.61132
665665 5.23165e18 2.34584
666666 −7.19436e17 −0.319455
667667 1.97205e18 0.867160
668668 −2.46384e18 −1.07292
669669 −1.39023e18 −0.599540
670670 8.36356e18 3.57195
671671 −1.31049e17 −0.0554289
672672 −1.78950e19 −7.49603
673673 −1.97434e18 −0.819075 −0.409538 0.912293i 0.634310π-0.634310\pi
−0.409538 + 0.912293i 0.634310π0.634310\pi
674674 −1.92807e18 −0.792196
675675 −1.70957e18 −0.695683
676676 6.50717e18 2.62264
677677 −9.89801e17 −0.395113 −0.197557 0.980291i 0.563301π-0.563301\pi
−0.197557 + 0.980291i 0.563301π0.563301\pi
678678 −3.00327e18 −1.18741
679679 1.53610e18 0.601542
680680 −5.06485e18 −1.96453
681681 1.64967e18 0.633784
682682 −2.62705e18 −0.999700
683683 2.17179e18 0.818621 0.409310 0.912395i 0.365769π-0.365769\pi
0.409310 + 0.912395i 0.365769π0.365769\pi
684684 3.51814e18 1.31355
685685 3.08162e18 1.13970
686686 −1.15039e19 −4.21442
687687 −1.31843e18 −0.478451
688688 −9.33284e18 −3.35497
689689 5.06740e18 1.80451
690690 −4.14898e18 −1.46360
691691 3.72762e18 1.30264 0.651321 0.758803i 0.274215π-0.274215\pi
0.651321 + 0.758803i 0.274215π0.274215\pi
692692 −8.66293e18 −2.99899
693693 9.84531e17 0.337647
694694 3.92327e18 1.33294
695695 −1.78520e18 −0.600875
696696 9.93923e18 3.31431
697697 2.02672e18 0.669548
698698 −9.67997e18 −3.16821
699699 1.94197e17 0.0629710
700700 1.05778e19 3.39828
701701 2.23745e18 0.712175 0.356087 0.934453i 0.384111π-0.384111\pi
0.356087 + 0.934453i 0.384111π0.384111\pi
702702 −9.34469e18 −2.94696
703703 1.21296e18 0.378998
704704 −8.91258e18 −2.75919
705705 3.13891e18 0.962831
706706 −9.52767e18 −2.89572
707707 −5.83865e18 −1.75827
708708 8.23681e18 2.45778
709709 −3.34421e17 −0.0988765 −0.0494383 0.998777i 0.515743π-0.515743\pi
−0.0494383 + 0.998777i 0.515743π0.515743\pi
710710 1.38155e19 4.04751
711711 1.88648e18 0.547646
712712 5.77560e18 1.66141
713713 3.09345e18 0.881783
714714 3.73104e18 1.05388
715715 −2.74137e18 −0.767323
716716 −1.75809e18 −0.487648
717717 −2.27087e17 −0.0624192
718718 3.80365e18 1.03608
719719 −4.70240e18 −1.26935 −0.634675 0.772779i 0.718866π-0.718866\pi
−0.634675 + 0.772779i 0.718866π0.718866\pi
720720 9.91364e18 2.65199
721721 3.53727e18 0.937755
722722 −3.75034e17 −0.0985324
723723 −4.32831e18 −1.12699
724724 1.58312e19 4.08520
725725 −2.86461e18 −0.732602
726726 4.78034e18 1.21163
727727 4.48755e18 1.12729 0.563645 0.826017i 0.309399π-0.309399\pi
0.563645 + 0.826017i 0.309399π0.309399\pi
728728 3.82299e19 9.51808
729729 3.95130e18 0.975013
730730 6.58012e18 1.60929
731731 1.14809e18 0.278299
732732 1.17629e18 0.282614
733733 −5.17738e17 −0.123292 −0.0616459 0.998098i 0.519635π-0.519635\pi
−0.0616459 + 0.998098i 0.519635π0.519635\pi
734734 −3.10013e17 −0.0731738
735735 −9.01852e18 −2.10993
736736 1.83771e19 4.26159
737737 −2.65360e18 −0.609954
738738 −6.42680e18 −1.46429
739739 −2.71391e18 −0.612924 −0.306462 0.951883i 0.599145π-0.599145\pi
−0.306462 + 0.951883i 0.599145π0.599145\pi
740740 6.25538e18 1.40039
741741 4.77136e18 1.05882
742742 2.11849e19 4.66016
743743 −4.43179e18 −0.966389 −0.483195 0.875513i 0.660524π-0.660524\pi
−0.483195 + 0.875513i 0.660524π0.660524\pi
744744 1.55912e19 3.37019
745745 4.24354e18 0.909312
746746 −6.60583e18 −1.40322
747747 −8.56844e17 −0.180434
748748 2.43043e18 0.507367
749749 1.46808e19 3.03821
750750 −3.31866e18 −0.680871
751751 −4.61250e18 −0.938160 −0.469080 0.883156i 0.655414π-0.655414\pi
−0.469080 + 0.883156i 0.655414π0.655414\pi
752752 −2.35642e19 −4.75157
753753 −3.17276e18 −0.634265
754754 −1.56583e19 −3.10335
755755 1.47680e18 0.290180
756756 −2.91802e19 −5.68456
757757 −4.52388e18 −0.873751 −0.436876 0.899522i 0.643915π-0.643915\pi
−0.436876 + 0.899522i 0.643915π0.643915\pi
758758 −4.81700e18 −0.922417
759759 1.31639e18 0.249927
760760 −2.70783e19 −5.09721
761761 −1.47709e18 −0.275680 −0.137840 0.990454i 0.544016π-0.544016\pi
−0.137840 + 0.990454i 0.544016π0.544016\pi
762762 7.41291e18 1.37177
763763 −1.38047e19 −2.53290
764764 −2.08621e18 −0.379535
765765 −1.21954e18 −0.219986
766766 3.33484e18 0.596469
767767 −8.57984e18 −1.52163
768768 3.25382e19 5.72197
769769 4.28730e18 0.747588 0.373794 0.927512i 0.378057π-0.378057\pi
0.373794 + 0.927512i 0.378057π0.378057\pi
770770 −1.14606e19 −1.98162
771771 −3.74420e18 −0.641956
772772 −4.58130e18 −0.778890
773773 8.06317e18 1.35937 0.679687 0.733502i 0.262115π-0.262115\pi
0.679687 + 0.733502i 0.262115π0.262115\pi
774774 −3.64062e18 −0.608638
775775 −4.49357e18 −0.744956
776776 −7.95063e18 −1.30707
777777 −3.04681e18 −0.496716
778778 −2.07222e19 −3.35018
779779 1.08355e19 1.73722
780780 2.46065e19 3.91233
781781 −4.38340e18 −0.691161
782782 −3.83156e18 −0.599145
783783 7.90237e18 1.22548
784784 6.77032e19 10.4125
785785 3.27595e18 0.499671
786786 −9.82082e18 −1.48560
787787 1.04577e17 0.0156892 0.00784459 0.999969i 0.497503π-0.497503\pi
0.00784459 + 0.999969i 0.497503π0.497503\pi
788788 1.41330e18 0.210288
789789 −7.77693e18 −1.14764
790790 −2.19600e19 −3.21407
791791 9.76873e18 1.41805
792792 −5.09578e18 −0.733664
793793 −1.22528e18 −0.174968
794794 1.79711e18 0.254532
795795 9.01574e18 1.26653
796796 2.59917e19 3.62159
797797 2.01353e18 0.278278 0.139139 0.990273i 0.455567π-0.455567\pi
0.139139 + 0.990273i 0.455567π0.455567\pi
798798 1.99473e19 2.73442
799799 2.89877e18 0.394149
800800 −2.66947e19 −3.60032
801801 1.39067e18 0.186043
802802 −1.95569e18 −0.259518
803803 −2.08775e18 −0.274807
804804 2.38187e19 3.10995
805805 1.34954e19 1.74788
806806 −2.45624e19 −3.15568
807807 −2.13312e18 −0.271855
808808 3.02200e19 3.82050
809809 −1.22832e19 −1.54045 −0.770223 0.637775i 0.779855π-0.779855\pi
−0.770223 + 0.637775i 0.779855π0.779855\pi
810810 −7.72351e18 −0.960864
811811 1.18857e19 1.46687 0.733433 0.679762i 0.237917π-0.237917\pi
0.733433 + 0.679762i 0.237917π0.237917\pi
812812 −4.88954e19 −5.98623
813813 −6.06074e18 −0.736100
814814 −2.65715e18 −0.320153
815815 4.80570e18 0.574424
816816 −1.19200e19 −1.41349
817817 6.13804e18 0.722081
818818 −4.89986e18 −0.571857
819819 9.20516e18 1.06583
820820 5.58801e19 6.41899
821821 9.46016e18 1.07812 0.539061 0.842267i 0.318779π-0.318779\pi
0.539061 + 0.842267i 0.318779π0.318779\pi
822822 1.17496e19 1.32849
823823 1.10832e19 1.24327 0.621635 0.783307i 0.286469π-0.286469\pi
0.621635 + 0.783307i 0.286469π0.286469\pi
824824 −1.83084e19 −2.03762
825825 −1.91220e18 −0.211146
826826 −3.58691e19 −3.92962
827827 2.09887e18 0.228139 0.114070 0.993473i 0.463611π-0.463611\pi
0.114070 + 0.993473i 0.463611π0.463611\pi
828828 9.07524e18 0.978725
829829 −2.98771e18 −0.319694 −0.159847 0.987142i 0.551100π-0.551100\pi
−0.159847 + 0.987142i 0.551100π0.551100\pi
830830 9.97428e18 1.05895
831831 −1.15832e19 −1.22017
832832 −8.33308e19 −8.70972
833833 −8.32856e18 −0.863729
834834 −6.80661e18 −0.700408
835835 4.56614e18 0.466216
836836 1.29938e19 1.31642
837837 1.23961e19 1.24614
838838 1.28797e19 1.28475
839839 2.28066e18 0.225739 0.112870 0.993610i 0.463996π-0.463996\pi
0.112870 + 0.993610i 0.463996π0.463996\pi
840840 6.80174e19 6.68043
841841 2.98086e18 0.290514
842842 2.34146e19 2.26443
843843 1.33559e19 1.28172
844844 5.82274e19 5.54500
845845 −1.20595e19 −1.13962
846846 −9.19209e18 −0.861999
847847 −1.55490e19 −1.44697
848848 −6.76823e19 −6.25031
849849 −8.17677e18 −0.749345
850850 5.56575e18 0.506175
851851 3.12890e18 0.282390
852852 3.93454e19 3.52400
853853 7.21495e18 0.641305 0.320653 0.947197i 0.396098π-0.396098\pi
0.320653 + 0.947197i 0.396098π0.396098\pi
854854 −5.12244e18 −0.451856
855855 −6.52002e18 −0.570780
856856 −7.59857e19 −6.60165
857857 1.06390e18 0.0917328 0.0458664 0.998948i 0.485395π-0.485395\pi
0.0458664 + 0.998948i 0.485395π0.485395\pi
858858 −1.04523e19 −0.894427
859859 −2.05252e19 −1.74314 −0.871571 0.490269i 0.836899π-0.836899\pi
−0.871571 + 0.490269i 0.836899π0.836899\pi
860860 3.16546e19 2.66807
861861 −2.72175e19 −2.27681
862862 −1.90845e19 −1.58447
863863 2.82686e18 0.232935 0.116467 0.993195i 0.462843π-0.462843\pi
0.116467 + 0.993195i 0.462843π0.462843\pi
864864 7.36407e19 6.02253
865865 1.60547e19 1.30316
866866 2.28512e19 1.84096
867867 −7.93903e18 −0.634810
868868 −7.66998e19 −6.08718
869869 6.96749e18 0.548843
870870 −2.78587e19 −2.17814
871871 −2.48106e19 −1.92540
872872 7.14511e19 5.50366
873873 −1.91439e18 −0.146365
874874 −2.04847e19 −1.55455
875875 1.07946e19 0.813119
876876 1.87396e19 1.40115
877877 2.36214e19 1.75311 0.876554 0.481304i 0.159837π-0.159837\pi
0.876554 + 0.481304i 0.159837π0.159837\pi
878878 2.08200e19 1.53379
879879 −4.08473e18 −0.298700
880880 3.66149e19 2.65779
881881 1.44046e19 1.03791 0.518953 0.854803i 0.326322π-0.326322\pi
0.518953 + 0.854803i 0.326322π0.326322\pi
882882 2.64101e19 1.88897
883883 −5.10220e17 −0.0362254 −0.0181127 0.999836i 0.505766π-0.505766\pi
−0.0181127 + 0.999836i 0.505766π0.505766\pi
884884 2.27240e19 1.60157
885885 −1.52650e19 −1.06798
886886 2.16065e19 1.50060
887887 2.00565e19 1.38278 0.691388 0.722483i 0.256999π-0.256999\pi
0.691388 + 0.722483i 0.256999π0.256999\pi
888888 1.57698e19 1.07930
889889 −2.41119e19 −1.63821
890890 −1.61884e19 −1.09187
891891 2.45052e18 0.164079
892892 −3.53985e19 −2.35295
893893 1.54977e19 1.02267
894894 1.61798e19 1.05994
895895 3.25820e18 0.211898
896896 −1.93999e20 −12.5256
897897 1.23080e19 0.788927
898898 3.16230e19 2.01236
899899 2.07713e19 1.31228
900900 −1.31827e19 −0.826855
901901 8.32599e18 0.518471
902902 −2.37366e19 −1.46750
903903 −1.54180e19 −0.946364
904904 −5.05615e19 −3.08123
905905 −2.93393e19 −1.77515
906906 5.63076e18 0.338247
907907 −6.20694e18 −0.370195 −0.185097 0.982720i 0.559260π-0.559260\pi
−0.185097 + 0.982720i 0.559260π0.559260\pi
908908 4.20044e19 2.48735
909909 7.27650e18 0.427816
910910 −1.07155e20 −6.25522
911911 1.78419e19 1.03412 0.517062 0.855948i 0.327026π-0.327026\pi
0.517062 + 0.855948i 0.327026π0.327026\pi
912912 −6.37283e19 −3.66746
913913 −3.16465e18 −0.180828
914914 2.39080e19 1.35642
915915 −2.17997e18 −0.122805
916916 −3.35701e19 −1.87773
917917 3.19441e19 1.77415
918918 −1.53538e19 −0.846717
919919 1.78621e18 0.0978099 0.0489049 0.998803i 0.484427π-0.484427\pi
0.0489049 + 0.998803i 0.484427π0.484427\pi
920920 −6.98500e19 −3.79792
921921 −2.12468e17 −0.0114711
922922 −5.56324e19 −2.98248
923923 −4.09839e19 −2.18174
924924 −3.26389e19 −1.72531
925925 −4.54506e18 −0.238571
926926 −5.22219e18 −0.272196
927927 −4.40837e18 −0.228171
928928 1.23395e20 6.34214
929929 7.35740e18 0.375511 0.187755 0.982216i 0.439879π-0.439879\pi
0.187755 + 0.982216i 0.439879π0.439879\pi
930930 −4.37006e19 −2.21487
931931 −4.45271e19 −2.24105
932932 4.94469e18 0.247136
933933 5.38805e18 0.267424
934934 −4.14051e19 −2.04079
935935 −4.50421e18 −0.220467
936936 −4.76446e19 −2.31590
937937 4.43507e18 0.214089 0.107044 0.994254i 0.465861π-0.465861\pi
0.107044 + 0.994254i 0.465861π0.465861\pi
938938 −1.03724e20 −4.97234
939939 −3.31156e18 −0.157655
940940 7.99238e19 3.77872
941941 −1.47756e19 −0.693766 −0.346883 0.937908i 0.612760π-0.612760\pi
−0.346883 + 0.937908i 0.612760π0.612760\pi
942942 1.24905e19 0.582439
943943 2.79508e19 1.29440
944944 1.14596e20 5.27049
945945 5.40785e19 2.47012
946946 −1.34462e19 −0.609968
947947 −1.40884e18 −0.0634726 −0.0317363 0.999496i 0.510104π-0.510104\pi
−0.0317363 + 0.999496i 0.510104π0.510104\pi
948948 −6.25401e19 −2.79837
949949 −1.95200e19 −0.867461
950950 2.97562e19 1.31333
951951 2.42160e18 0.106152
952952 6.28137e19 2.73473
953953 2.82781e18 0.122277 0.0611386 0.998129i 0.480527π-0.480527\pi
0.0611386 + 0.998129i 0.480527π0.480527\pi
954954 −2.64020e19 −1.13389
955955 3.86629e18 0.164920
956956 −5.78215e18 −0.244970
957957 8.83904e18 0.371944
958958 6.86237e19 2.86813
959959 −3.82179e19 −1.58652
960960 −1.48259e20 −6.11306
961961 8.16533e18 0.334404
962962 −2.48438e19 −1.01060
963963 −1.82961e19 −0.739246
964964 −1.10208e20 −4.42297
965965 8.49033e18 0.338452
966966 5.14552e19 2.03741
967967 −4.46149e19 −1.75472 −0.877360 0.479832i 0.840697π-0.840697\pi
−0.877360 + 0.479832i 0.840697π0.840697\pi
968968 8.04791e19 3.14408
969969 7.83959e18 0.304221
970970 2.22848e19 0.859000
971971 −1.36662e19 −0.523267 −0.261634 0.965167i 0.584261π-0.584261\pi
−0.261634 + 0.965167i 0.584261π0.584261\pi
972972 6.17190e19 2.34741
973973 2.21398e19 0.836451
974974 −8.43135e19 −3.16420
975975 −1.78787e19 −0.666508
976976 1.63653e19 0.606040
977977 3.04745e19 1.12104 0.560520 0.828141i 0.310601π-0.310601\pi
0.560520 + 0.828141i 0.310601π0.310601\pi
978978 1.83232e19 0.669575
979979 5.13629e18 0.186450
980980 −2.29632e20 −8.28062
981981 1.72043e19 0.616295
982982 −4.40793e19 −1.56859
983983 4.75117e19 1.67959 0.839794 0.542905i 0.182676π-0.182676\pi
0.839794 + 0.542905i 0.182676π0.182676\pi
984984 1.40874e20 4.94723
985985 −2.61921e18 −0.0913767
986986 −2.57274e19 −0.891652
987987 −3.89285e19 −1.34031
988988 1.21490e20 4.15546
989989 1.58334e19 0.538021
990990 1.42830e19 0.482159
991991 −3.03259e19 −1.01703 −0.508517 0.861052i 0.669806π-0.669806\pi
−0.508517 + 0.861052i 0.669806π0.669806\pi
992992 1.93564e20 6.44908
993993 3.74447e19 1.23942
994994 −1.71338e20 −5.63434
995995 −4.81694e19 −1.57370
996996 2.84059e19 0.921983
997997 −3.94393e19 −1.27178 −0.635889 0.771781i 0.719366π-0.719366\pi
−0.635889 + 0.771781i 0.719366π0.719366\pi
998998 1.04349e20 3.34302
999999 1.25381e19 0.399076
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.14.a.b.1.1 109
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.14.a.b.1.1 109 1.1 even 1 trivial