Properties

Label 197.3.c.a.14.7
Level $197$
Weight $3$
Character 197.14
Analytic conductor $5.368$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,3,Mod(14,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 197.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36786120790\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 14.7
Character \(\chi\) \(=\) 197.14
Dual form 197.3.c.a.183.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.85403 + 1.85403i) q^{2} +(0.722049 - 0.722049i) q^{3} -2.87488i q^{4} +(-6.14279 + 6.14279i) q^{5} +2.67741i q^{6} -9.45582i q^{7} +(-2.08602 - 2.08602i) q^{8} +7.95729i q^{9} -22.7779i q^{10} +(3.71305 - 3.71305i) q^{11} +(-2.07580 - 2.07580i) q^{12} +(0.369578 - 0.369578i) q^{13} +(17.5314 + 17.5314i) q^{14} +8.87079i q^{15} +19.2346 q^{16} +(-15.3969 - 15.3969i) q^{17} +(-14.7531 - 14.7531i) q^{18} -17.7156i q^{19} +(17.6598 + 17.6598i) q^{20} +(-6.82756 - 6.82756i) q^{21} +13.7682i q^{22} -4.12352 q^{23} -3.01241 q^{24} -50.4678i q^{25} +1.37042i q^{26} +(12.2440 + 12.2440i) q^{27} -27.1843 q^{28} +10.3294 q^{29} +(-16.4467 - 16.4467i) q^{30} +(34.3182 - 34.3182i) q^{31} +(-27.3175 + 27.3175i) q^{32} -5.36201i q^{33} +57.0928 q^{34} +(58.0851 + 58.0851i) q^{35} +22.8762 q^{36} -53.7877 q^{37} +(32.8453 + 32.8453i) q^{38} -0.533706i q^{39} +25.6279 q^{40} +17.7713i q^{41} +25.3171 q^{42} -15.8937i q^{43} +(-10.6746 - 10.6746i) q^{44} +(-48.8800 - 48.8800i) q^{45} +(7.64514 - 7.64514i) q^{46} -59.0202i q^{47} +(13.8883 - 13.8883i) q^{48} -40.4125 q^{49} +(93.5689 + 93.5689i) q^{50} -22.2347 q^{51} +(-1.06249 - 1.06249i) q^{52} -65.5196 q^{53} -45.4015 q^{54} +45.6170i q^{55} +(-19.7250 + 19.7250i) q^{56} +(-12.7915 - 12.7915i) q^{57} +(-19.1510 + 19.1510i) q^{58} -1.87769 q^{59} +25.5024 q^{60} -67.6008 q^{61} +127.254i q^{62} +75.2427 q^{63} -24.3567i q^{64} +4.54048i q^{65} +(9.94135 + 9.94135i) q^{66} +(-73.0939 + 73.0939i) q^{67} +(-44.2642 + 44.2642i) q^{68} +(-2.97738 + 2.97738i) q^{69} -215.383 q^{70} +(-77.9060 - 77.9060i) q^{71} +(16.5990 - 16.5990i) q^{72} +(-37.2626 + 37.2626i) q^{73} +(99.7241 - 99.7241i) q^{74} +(-36.4402 - 36.4402i) q^{75} -50.9301 q^{76} +(-35.1099 - 35.1099i) q^{77} +(0.989509 + 0.989509i) q^{78} +(4.08633 + 4.08633i) q^{79} +(-118.154 + 118.154i) q^{80} -53.9341 q^{81} +(-32.9485 - 32.9485i) q^{82} +53.8331i q^{83} +(-19.6284 + 19.6284i) q^{84} +189.160 q^{85} +(29.4675 + 29.4675i) q^{86} +(7.45831 - 7.45831i) q^{87} -15.4910 q^{88} +(30.5612 + 30.5612i) q^{89} +181.250 q^{90} +(-3.49466 - 3.49466i) q^{91} +11.8546i q^{92} -49.5589i q^{93} +(109.425 + 109.425i) q^{94} +(108.823 + 108.823i) q^{95} +39.4492i q^{96} +8.46168i q^{97} +(74.9260 - 74.9260i) q^{98} +(29.5458 + 29.5458i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 2 q^{2} - 2 q^{3} - 10 q^{5} - 6 q^{8} + 10 q^{11} + 68 q^{12} + 2 q^{13} - 2 q^{14} - 280 q^{16} - 30 q^{17} - 68 q^{18} + 114 q^{20} - 20 q^{21} + 48 q^{23} + 60 q^{24} + 22 q^{27} + 392 q^{28}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85403 + 1.85403i −0.927016 + 0.927016i −0.997512 0.0704957i \(-0.977542\pi\)
0.0704957 + 0.997512i \(0.477542\pi\)
\(3\) 0.722049 0.722049i 0.240683 0.240683i −0.576450 0.817133i \(-0.695562\pi\)
0.817133 + 0.576450i \(0.195562\pi\)
\(4\) 2.87488i 0.718719i
\(5\) −6.14279 + 6.14279i −1.22856 + 1.22856i −0.264049 + 0.964509i \(0.585058\pi\)
−0.964509 + 0.264049i \(0.914942\pi\)
\(6\) 2.67741i 0.446234i
\(7\) 9.45582i 1.35083i −0.737437 0.675415i \(-0.763964\pi\)
0.737437 0.675415i \(-0.236036\pi\)
\(8\) −2.08602 2.08602i −0.260752 0.260752i
\(9\) 7.95729i 0.884143i
\(10\) 22.7779i 2.27779i
\(11\) 3.71305 3.71305i 0.337550 0.337550i −0.517894 0.855445i \(-0.673284\pi\)
0.855445 + 0.517894i \(0.173284\pi\)
\(12\) −2.07580 2.07580i −0.172983 0.172983i
\(13\) 0.369578 0.369578i 0.0284291 0.0284291i −0.692749 0.721178i \(-0.743601\pi\)
0.721178 + 0.692749i \(0.243601\pi\)
\(14\) 17.5314 + 17.5314i 1.25224 + 1.25224i
\(15\) 8.87079i 0.591386i
\(16\) 19.2346 1.20216
\(17\) −15.3969 15.3969i −0.905701 0.905701i 0.0902205 0.995922i \(-0.471243\pi\)
−0.995922 + 0.0902205i \(0.971243\pi\)
\(18\) −14.7531 14.7531i −0.819615 0.819615i
\(19\) 17.7156i 0.932399i −0.884680 0.466199i \(-0.845623\pi\)
0.884680 0.466199i \(-0.154377\pi\)
\(20\) 17.6598 + 17.6598i 0.882988 + 0.882988i
\(21\) −6.82756 6.82756i −0.325122 0.325122i
\(22\) 13.7682i 0.625829i
\(23\) −4.12352 −0.179283 −0.0896417 0.995974i \(-0.528572\pi\)
−0.0896417 + 0.995974i \(0.528572\pi\)
\(24\) −3.01241 −0.125517
\(25\) 50.4678i 2.01871i
\(26\) 1.37042i 0.0527084i
\(27\) 12.2440 + 12.2440i 0.453481 + 0.453481i
\(28\) −27.1843 −0.970868
\(29\) 10.3294 0.356185 0.178093 0.984014i \(-0.443007\pi\)
0.178093 + 0.984014i \(0.443007\pi\)
\(30\) −16.4467 16.4467i −0.548225 0.548225i
\(31\) 34.3182 34.3182i 1.10704 1.10704i 0.113502 0.993538i \(-0.463793\pi\)
0.993538 0.113502i \(-0.0362068\pi\)
\(32\) −27.3175 + 27.3175i −0.853672 + 0.853672i
\(33\) 5.36201i 0.162485i
\(34\) 57.0928 1.67920
\(35\) 58.0851 + 58.0851i 1.65957 + 1.65957i
\(36\) 22.8762 0.635451
\(37\) −53.7877 −1.45372 −0.726860 0.686785i \(-0.759021\pi\)
−0.726860 + 0.686785i \(0.759021\pi\)
\(38\) 32.8453 + 32.8453i 0.864349 + 0.864349i
\(39\) 0.533706i 0.0136848i
\(40\) 25.6279 0.640699
\(41\) 17.7713i 0.433446i 0.976233 + 0.216723i \(0.0695368\pi\)
−0.976233 + 0.216723i \(0.930463\pi\)
\(42\) 25.3171 0.602787
\(43\) 15.8937i 0.369621i −0.982774 0.184811i \(-0.940833\pi\)
0.982774 0.184811i \(-0.0591672\pi\)
\(44\) −10.6746 10.6746i −0.242604 0.242604i
\(45\) −48.8800 48.8800i −1.08622 1.08622i
\(46\) 7.64514 7.64514i 0.166199 0.166199i
\(47\) 59.0202i 1.25575i −0.778314 0.627875i \(-0.783925\pi\)
0.778314 0.627875i \(-0.216075\pi\)
\(48\) 13.8883 13.8883i 0.289340 0.289340i
\(49\) −40.4125 −0.824744
\(50\) 93.5689 + 93.5689i 1.87138 + 1.87138i
\(51\) −22.2347 −0.435974
\(52\) −1.06249 1.06249i −0.0204325 0.0204325i
\(53\) −65.5196 −1.23622 −0.618109 0.786092i \(-0.712101\pi\)
−0.618109 + 0.786092i \(0.712101\pi\)
\(54\) −45.4015 −0.840769
\(55\) 45.6170i 0.829400i
\(56\) −19.7250 + 19.7250i −0.352232 + 0.352232i
\(57\) −12.7915 12.7915i −0.224413 0.224413i
\(58\) −19.1510 + 19.1510i −0.330189 + 0.330189i
\(59\) −1.87769 −0.0318253 −0.0159127 0.999873i \(-0.505065\pi\)
−0.0159127 + 0.999873i \(0.505065\pi\)
\(60\) 25.5024 0.425040
\(61\) −67.6008 −1.10821 −0.554105 0.832447i \(-0.686939\pi\)
−0.554105 + 0.832447i \(0.686939\pi\)
\(62\) 127.254i 2.05249i
\(63\) 75.2427 1.19433
\(64\) 24.3567i 0.380573i
\(65\) 4.54048i 0.0698535i
\(66\) 9.94135 + 9.94135i 0.150626 + 0.150626i
\(67\) −73.0939 + 73.0939i −1.09095 + 1.09095i −0.0955263 + 0.995427i \(0.530453\pi\)
−0.995427 + 0.0955263i \(0.969547\pi\)
\(68\) −44.2642 + 44.2642i −0.650945 + 0.650945i
\(69\) −2.97738 + 2.97738i −0.0431505 + 0.0431505i
\(70\) −215.383 −3.07691
\(71\) −77.9060 77.9060i −1.09727 1.09727i −0.994729 0.102539i \(-0.967303\pi\)
−0.102539 0.994729i \(-0.532697\pi\)
\(72\) 16.5990 16.5990i 0.230542 0.230542i
\(73\) −37.2626 + 37.2626i −0.510446 + 0.510446i −0.914663 0.404217i \(-0.867544\pi\)
0.404217 + 0.914663i \(0.367544\pi\)
\(74\) 99.7241 99.7241i 1.34762 1.34762i
\(75\) −36.4402 36.4402i −0.485869 0.485869i
\(76\) −50.9301 −0.670133
\(77\) −35.1099 35.1099i −0.455973 0.455973i
\(78\) 0.989509 + 0.989509i 0.0126860 + 0.0126860i
\(79\) 4.08633 + 4.08633i 0.0517257 + 0.0517257i 0.732497 0.680771i \(-0.238355\pi\)
−0.680771 + 0.732497i \(0.738355\pi\)
\(80\) −118.154 + 118.154i −1.47693 + 1.47693i
\(81\) −53.9341 −0.665853
\(82\) −32.9485 32.9485i −0.401811 0.401811i
\(83\) 53.8331i 0.648592i 0.945956 + 0.324296i \(0.105127\pi\)
−0.945956 + 0.324296i \(0.894873\pi\)
\(84\) −19.6284 + 19.6284i −0.233671 + 0.233671i
\(85\) 189.160 2.22541
\(86\) 29.4675 + 29.4675i 0.342645 + 0.342645i
\(87\) 7.45831 7.45831i 0.0857277 0.0857277i
\(88\) −15.4910 −0.176034
\(89\) 30.5612 + 30.5612i 0.343385 + 0.343385i 0.857638 0.514254i \(-0.171931\pi\)
−0.514254 + 0.857638i \(0.671931\pi\)
\(90\) 181.250 2.01389
\(91\) −3.49466 3.49466i −0.0384028 0.0384028i
\(92\) 11.8546i 0.128854i
\(93\) 49.5589i 0.532891i
\(94\) 109.425 + 109.425i 1.16410 + 1.16410i
\(95\) 108.823 + 108.823i 1.14551 + 1.14551i
\(96\) 39.4492i 0.410929i
\(97\) 8.46168i 0.0872338i 0.999048 + 0.0436169i \(0.0138881\pi\)
−0.999048 + 0.0436169i \(0.986112\pi\)
\(98\) 74.9260 74.9260i 0.764551 0.764551i
\(99\) 29.5458 + 29.5458i 0.298443 + 0.298443i
\(100\) −145.089 −1.45089
\(101\) 95.6836 0.947362 0.473681 0.880696i \(-0.342925\pi\)
0.473681 + 0.880696i \(0.342925\pi\)
\(102\) 41.2238 41.2238i 0.404155 0.404155i
\(103\) 29.6005 29.6005i 0.287384 0.287384i −0.548661 0.836045i \(-0.684862\pi\)
0.836045 + 0.548661i \(0.184862\pi\)
\(104\) −1.54189 −0.0148259
\(105\) 83.8806 0.798863
\(106\) 121.475 121.475i 1.14599 1.14599i
\(107\) 191.609i 1.79074i −0.445323 0.895370i \(-0.646911\pi\)
0.445323 0.895370i \(-0.353089\pi\)
\(108\) 35.2000 35.2000i 0.325926 0.325926i
\(109\) 65.0326i 0.596629i −0.954468 0.298315i \(-0.903576\pi\)
0.954468 0.298315i \(-0.0964245\pi\)
\(110\) −84.5754 84.5754i −0.768867 0.768867i
\(111\) −38.8373 + 38.8373i −0.349886 + 0.349886i
\(112\) 181.879i 1.62392i
\(113\) 57.6292 + 57.6292i 0.509993 + 0.509993i 0.914524 0.404531i \(-0.132565\pi\)
−0.404531 + 0.914524i \(0.632565\pi\)
\(114\) 47.4318 0.416068
\(115\) 25.3299 25.3299i 0.220260 0.220260i
\(116\) 29.6956i 0.255997i
\(117\) 2.94084 + 2.94084i 0.0251354 + 0.0251354i
\(118\) 3.48131 3.48131i 0.0295026 0.0295026i
\(119\) −145.590 + 145.590i −1.22345 + 1.22345i
\(120\) 18.5046 18.5046i 0.154205 0.154205i
\(121\) 93.4265i 0.772120i
\(122\) 125.334 125.334i 1.02733 1.02733i
\(123\) 12.8317 + 12.8317i 0.104323 + 0.104323i
\(124\) −98.6606 98.6606i −0.795650 0.795650i
\(125\) 156.443 + 156.443i 1.25155 + 1.25155i
\(126\) −139.502 + 139.502i −1.10716 + 1.10716i
\(127\) 136.940i 1.07826i −0.842221 0.539132i \(-0.818752\pi\)
0.842221 0.539132i \(-0.181248\pi\)
\(128\) −64.1119 64.1119i −0.500874 0.500874i
\(129\) −11.4760 11.4760i −0.0889616 0.0889616i
\(130\) −8.41819 8.41819i −0.0647553 0.0647553i
\(131\) −126.763 + 126.763i −0.967653 + 0.967653i −0.999493 0.0318401i \(-0.989863\pi\)
0.0318401 + 0.999493i \(0.489863\pi\)
\(132\) −15.4151 −0.116781
\(133\) −167.515 −1.25951
\(134\) 271.037i 2.02266i
\(135\) −150.425 −1.11426
\(136\) 64.2365i 0.472327i
\(137\) 247.589i 1.80722i −0.428359 0.903609i \(-0.640908\pi\)
0.428359 0.903609i \(-0.359092\pi\)
\(138\) 11.0403i 0.0800024i
\(139\) 79.3138 + 79.3138i 0.570603 + 0.570603i 0.932297 0.361694i \(-0.117801\pi\)
−0.361694 + 0.932297i \(0.617801\pi\)
\(140\) 166.987 166.987i 1.19277 1.19277i
\(141\) −42.6155 42.6155i −0.302238 0.302238i
\(142\) 288.881 2.03437
\(143\) 2.74452i 0.0191925i
\(144\) 153.055i 1.06288i
\(145\) −63.4511 + 63.4511i −0.437594 + 0.437594i
\(146\) 138.172i 0.946384i
\(147\) −29.1798 + 29.1798i −0.198502 + 0.198502i
\(148\) 154.633i 1.04482i
\(149\) 91.5706 + 91.5706i 0.614568 + 0.614568i 0.944133 0.329565i \(-0.106902\pi\)
−0.329565 + 0.944133i \(0.606902\pi\)
\(150\) 135.123 0.900818
\(151\) −63.1800 63.1800i −0.418410 0.418410i 0.466245 0.884656i \(-0.345606\pi\)
−0.884656 + 0.466245i \(0.845606\pi\)
\(152\) −36.9550 + 36.9550i −0.243125 + 0.243125i
\(153\) 122.518 122.518i 0.800770 0.800770i
\(154\) 130.190 0.845389
\(155\) 421.619i 2.72012i
\(156\) −1.53434 −0.00983551
\(157\) 51.2253i 0.326276i 0.986603 + 0.163138i \(0.0521615\pi\)
−0.986603 + 0.163138i \(0.947838\pi\)
\(158\) −15.1524 −0.0959012
\(159\) −47.3084 + 47.3084i −0.297537 + 0.297537i
\(160\) 335.611i 2.09757i
\(161\) 38.9912i 0.242182i
\(162\) 99.9955 99.9955i 0.617256 0.617256i
\(163\) 163.659i 1.00405i −0.864854 0.502023i \(-0.832589\pi\)
0.864854 0.502023i \(-0.167411\pi\)
\(164\) 51.0902 0.311526
\(165\) 32.9377 + 32.9377i 0.199623 + 0.199623i
\(166\) −99.8084 99.8084i −0.601255 0.601255i
\(167\) 193.902 193.902i 1.16109 1.16109i 0.176855 0.984237i \(-0.443408\pi\)
0.984237 0.176855i \(-0.0565924\pi\)
\(168\) 28.4848i 0.169553i
\(169\) 168.727i 0.998384i
\(170\) −350.709 + 350.709i −2.06299 + 2.06299i
\(171\) 140.968 0.824374
\(172\) −45.6925 −0.265654
\(173\) 330.377i 1.90969i 0.297099 + 0.954847i \(0.403981\pi\)
−0.297099 + 0.954847i \(0.596019\pi\)
\(174\) 27.6559i 0.158942i
\(175\) −477.214 −2.72694
\(176\) 71.4190 71.4190i 0.405790 0.405790i
\(177\) −1.35579 + 1.35579i −0.00765982 + 0.00765982i
\(178\) −113.323 −0.636646
\(179\) 167.632 167.632i 0.936490 0.936490i −0.0616104 0.998100i \(-0.519624\pi\)
0.998100 + 0.0616104i \(0.0196236\pi\)
\(180\) −140.524 + 140.524i −0.780688 + 0.780688i
\(181\) 250.908i 1.38623i −0.720827 0.693115i \(-0.756238\pi\)
0.720827 0.693115i \(-0.243762\pi\)
\(182\) 12.9584 0.0712001
\(183\) −48.8111 + 48.8111i −0.266727 + 0.266727i
\(184\) 8.60173 + 8.60173i 0.0467486 + 0.0467486i
\(185\) 330.406 330.406i 1.78598 1.78598i
\(186\) 91.8838 + 91.8838i 0.493999 + 0.493999i
\(187\) −114.339 −0.611439
\(188\) −169.676 −0.902531
\(189\) 115.777 115.777i 0.612577 0.612577i
\(190\) −403.523 −2.12381
\(191\) −317.466 −1.66212 −0.831062 0.556179i \(-0.812267\pi\)
−0.831062 + 0.556179i \(0.812267\pi\)
\(192\) −17.5867 17.5867i −0.0915976 0.0915976i
\(193\) 179.490 0.930002 0.465001 0.885310i \(-0.346054\pi\)
0.465001 + 0.885310i \(0.346054\pi\)
\(194\) −15.6882 15.6882i −0.0808672 0.0808672i
\(195\) 3.27845 + 3.27845i 0.0168126 + 0.0168126i
\(196\) 116.181i 0.592759i
\(197\) 40.5037 192.791i 0.205603 0.978636i
\(198\) −109.558 −0.553323
\(199\) −42.9467 + 42.9467i −0.215812 + 0.215812i −0.806731 0.590919i \(-0.798765\pi\)
0.590919 + 0.806731i \(0.298765\pi\)
\(200\) −105.277 + 105.277i −0.526383 + 0.526383i
\(201\) 105.555i 0.525148i
\(202\) −177.400 + 177.400i −0.878220 + 0.878220i
\(203\) 97.6726i 0.481146i
\(204\) 63.9219i 0.313343i
\(205\) −109.165 109.165i −0.532513 0.532513i
\(206\) 109.761i 0.532819i
\(207\) 32.8120i 0.158512i
\(208\) 7.10868 7.10868i 0.0341763 0.0341763i
\(209\) −65.7789 65.7789i −0.314731 0.314731i
\(210\) −155.517 + 155.517i −0.740559 + 0.740559i
\(211\) 177.017 + 177.017i 0.838944 + 0.838944i 0.988720 0.149776i \(-0.0478552\pi\)
−0.149776 + 0.988720i \(0.547855\pi\)
\(212\) 188.361i 0.888494i
\(213\) −112.504 −0.528188
\(214\) 355.250 + 355.250i 1.66005 + 1.66005i
\(215\) 97.6318 + 97.6318i 0.454101 + 0.454101i
\(216\) 51.0824i 0.236493i
\(217\) −324.507 324.507i −1.49542 1.49542i
\(218\) 120.573 + 120.573i 0.553085 + 0.553085i
\(219\) 53.8108i 0.245712i
\(220\) 131.143 0.596105
\(221\) −11.3807 −0.0514965
\(222\) 144.011i 0.648700i
\(223\) 104.788i 0.469904i 0.972007 + 0.234952i \(0.0754932\pi\)
−0.972007 + 0.234952i \(0.924507\pi\)
\(224\) 258.309 + 258.309i 1.15317 + 1.15317i
\(225\) 401.587 1.78483
\(226\) −213.693 −0.945544
\(227\) −48.7907 48.7907i −0.214937 0.214937i 0.591424 0.806361i \(-0.298566\pi\)
−0.806361 + 0.591424i \(0.798566\pi\)
\(228\) −36.7740 + 36.7740i −0.161290 + 0.161290i
\(229\) 133.506 133.506i 0.582996 0.582996i −0.352730 0.935725i \(-0.614746\pi\)
0.935725 + 0.352730i \(0.114746\pi\)
\(230\) 93.9250i 0.408370i
\(231\) −50.7022 −0.219490
\(232\) −21.5472 21.5472i −0.0928760 0.0928760i
\(233\) 349.226 1.49882 0.749411 0.662105i \(-0.230337\pi\)
0.749411 + 0.662105i \(0.230337\pi\)
\(234\) −10.9048 −0.0466018
\(235\) 362.549 + 362.549i 1.54276 + 1.54276i
\(236\) 5.39814i 0.0228735i
\(237\) 5.90107 0.0248990
\(238\) 539.859i 2.26832i
\(239\) −404.019 −1.69046 −0.845229 0.534405i \(-0.820536\pi\)
−0.845229 + 0.534405i \(0.820536\pi\)
\(240\) 170.626i 0.710942i
\(241\) −56.3505 56.3505i −0.233819 0.233819i 0.580465 0.814285i \(-0.302871\pi\)
−0.814285 + 0.580465i \(0.802871\pi\)
\(242\) −173.216 173.216i −0.715768 0.715768i
\(243\) −149.139 + 149.139i −0.613741 + 0.613741i
\(244\) 194.344i 0.796492i
\(245\) 248.245 248.245i 1.01325 1.01325i
\(246\) −47.5809 −0.193418
\(247\) −6.54728 6.54728i −0.0265072 0.0265072i
\(248\) −143.177 −0.577326
\(249\) 38.8702 + 38.8702i 0.156105 + 0.156105i
\(250\) −580.101 −2.32041
\(251\) 30.6780 0.122223 0.0611116 0.998131i \(-0.480535\pi\)
0.0611116 + 0.998131i \(0.480535\pi\)
\(252\) 216.313i 0.858386i
\(253\) −15.3108 + 15.3108i −0.0605172 + 0.0605172i
\(254\) 253.890 + 253.890i 0.999569 + 0.999569i
\(255\) 136.583 136.583i 0.535619 0.535619i
\(256\) 335.158 1.30921
\(257\) −329.837 −1.28341 −0.641706 0.766950i \(-0.721773\pi\)
−0.641706 + 0.766950i \(0.721773\pi\)
\(258\) 42.5539 0.164938
\(259\) 508.606i 1.96373i
\(260\) 13.0533 0.0502050
\(261\) 82.1938i 0.314919i
\(262\) 470.044i 1.79406i
\(263\) 63.3241 + 63.3241i 0.240776 + 0.240776i 0.817171 0.576395i \(-0.195541\pi\)
−0.576395 + 0.817171i \(0.695541\pi\)
\(264\) −11.1853 + 11.1853i −0.0423684 + 0.0423684i
\(265\) 402.473 402.473i 1.51877 1.51877i
\(266\) 310.579 310.579i 1.16759 1.16759i
\(267\) 44.1334 0.165294
\(268\) 210.136 + 210.136i 0.784089 + 0.784089i
\(269\) −346.391 + 346.391i −1.28770 + 1.28770i −0.351517 + 0.936181i \(0.614334\pi\)
−0.936181 + 0.351517i \(0.885666\pi\)
\(270\) 278.892 278.892i 1.03293 1.03293i
\(271\) 27.6402 27.6402i 0.101993 0.101993i −0.654269 0.756262i \(-0.727023\pi\)
0.756262 + 0.654269i \(0.227023\pi\)
\(272\) −296.154 296.154i −1.08880 1.08880i
\(273\) −5.04663 −0.0184858
\(274\) 459.038 + 459.038i 1.67532 + 1.67532i
\(275\) −187.389 187.389i −0.681416 0.681416i
\(276\) 8.55961 + 8.55961i 0.0310131 + 0.0310131i
\(277\) −316.919 + 316.919i −1.14411 + 1.14411i −0.156422 + 0.987690i \(0.549996\pi\)
−0.987690 + 0.156422i \(0.950004\pi\)
\(278\) −294.101 −1.05792
\(279\) 273.080 + 273.080i 0.978782 + 0.978782i
\(280\) 242.333i 0.865475i
\(281\) 214.995 214.995i 0.765105 0.765105i −0.212135 0.977240i \(-0.568042\pi\)
0.977240 + 0.212135i \(0.0680417\pi\)
\(282\) 158.021 0.560358
\(283\) 19.6373 + 19.6373i 0.0693897 + 0.0693897i 0.740950 0.671560i \(-0.234376\pi\)
−0.671560 + 0.740950i \(0.734376\pi\)
\(284\) −223.970 + 223.970i −0.788627 + 0.788627i
\(285\) 157.151 0.551408
\(286\) 5.08843 + 5.08843i 0.0177917 + 0.0177917i
\(287\) 168.042 0.585512
\(288\) −217.373 217.373i −0.754768 0.754768i
\(289\) 185.130i 0.640590i
\(290\) 235.281i 0.811314i
\(291\) 6.10975 + 6.10975i 0.0209957 + 0.0209957i
\(292\) 107.125 + 107.125i 0.366867 + 0.366867i
\(293\) 504.154i 1.72066i 0.509736 + 0.860331i \(0.329743\pi\)
−0.509736 + 0.860331i \(0.670257\pi\)
\(294\) 108.201i 0.368029i
\(295\) 11.5343 11.5343i 0.0390993 0.0390993i
\(296\) 112.202 + 112.202i 0.379061 + 0.379061i
\(297\) 90.9252 0.306145
\(298\) −339.550 −1.13943
\(299\) −1.52396 + 1.52396i −0.00509686 + 0.00509686i
\(300\) −104.761 + 104.761i −0.349204 + 0.349204i
\(301\) −150.288 −0.499296
\(302\) 234.275 0.775746
\(303\) 69.0882 69.0882i 0.228014 0.228014i
\(304\) 340.752i 1.12089i
\(305\) 415.258 415.258i 1.36150 1.36150i
\(306\) 454.304i 1.48465i
\(307\) 391.840 + 391.840i 1.27635 + 1.27635i 0.942695 + 0.333656i \(0.108282\pi\)
0.333656 + 0.942695i \(0.391718\pi\)
\(308\) −100.937 + 100.937i −0.327717 + 0.327717i
\(309\) 42.7461i 0.138337i
\(310\) −781.696 781.696i −2.52160 2.52160i
\(311\) −302.162 −0.971582 −0.485791 0.874075i \(-0.661468\pi\)
−0.485791 + 0.874075i \(0.661468\pi\)
\(312\) −1.11332 + 1.11332i −0.00356834 + 0.00356834i
\(313\) 76.7248i 0.245127i −0.992461 0.122564i \(-0.960888\pi\)
0.992461 0.122564i \(-0.0391115\pi\)
\(314\) −94.9733 94.9733i −0.302463 0.302463i
\(315\) −462.200 + 462.200i −1.46730 + 1.46730i
\(316\) 11.7477 11.7477i 0.0371763 0.0371763i
\(317\) −218.686 + 218.686i −0.689861 + 0.689861i −0.962201 0.272340i \(-0.912203\pi\)
0.272340 + 0.962201i \(0.412203\pi\)
\(318\) 175.423i 0.551643i
\(319\) 38.3535 38.3535i 0.120230 0.120230i
\(320\) 149.618 + 149.618i 0.467557 + 0.467557i
\(321\) −138.351 138.351i −0.431001 0.431001i
\(322\) −72.2910 72.2910i −0.224506 0.224506i
\(323\) −272.765 + 272.765i −0.844475 + 0.844475i
\(324\) 155.054i 0.478561i
\(325\) −18.6518 18.6518i −0.0573900 0.0573900i
\(326\) 303.430 + 303.430i 0.930767 + 0.930767i
\(327\) −46.9567 46.9567i −0.143599 0.143599i
\(328\) 37.0712 37.0712i 0.113022 0.113022i
\(329\) −558.084 −1.69630
\(330\) −122.135 −0.370107
\(331\) 285.481i 0.862479i −0.902237 0.431240i \(-0.858076\pi\)
0.902237 0.431240i \(-0.141924\pi\)
\(332\) 154.764 0.466155
\(333\) 428.004i 1.28530i
\(334\) 719.003i 2.15270i
\(335\) 898.001i 2.68060i
\(336\) −131.325 131.325i −0.390849 0.390849i
\(337\) −267.588 + 267.588i −0.794029 + 0.794029i −0.982146 0.188118i \(-0.939761\pi\)
0.188118 + 0.982146i \(0.439761\pi\)
\(338\) −312.825 312.825i −0.925518 0.925518i
\(339\) 83.2223 0.245494
\(340\) 543.812i 1.59945i
\(341\) 254.851i 0.747363i
\(342\) −261.359 + 261.359i −0.764209 + 0.764209i
\(343\) 81.2023i 0.236741i
\(344\) −33.1546 + 33.1546i −0.0963796 + 0.0963796i
\(345\) 36.5789i 0.106026i
\(346\) −612.530 612.530i −1.77032 1.77032i
\(347\) −182.404 −0.525660 −0.262830 0.964842i \(-0.584656\pi\)
−0.262830 + 0.964842i \(0.584656\pi\)
\(348\) −21.4417 21.4417i −0.0616141 0.0616141i
\(349\) 130.381 130.381i 0.373584 0.373584i −0.495197 0.868781i \(-0.664904\pi\)
0.868781 + 0.495197i \(0.164904\pi\)
\(350\) 884.770 884.770i 2.52791 2.52791i
\(351\) 9.05022 0.0257841
\(352\) 202.863i 0.576314i
\(353\) −51.1331 −0.144853 −0.0724264 0.997374i \(-0.523074\pi\)
−0.0724264 + 0.997374i \(0.523074\pi\)
\(354\) 5.02735i 0.0142016i
\(355\) 957.121 2.69612
\(356\) 87.8597 87.8597i 0.246797 0.246797i
\(357\) 210.247i 0.588927i
\(358\) 621.589i 1.73628i
\(359\) 228.229 228.229i 0.635735 0.635735i −0.313766 0.949500i \(-0.601591\pi\)
0.949500 + 0.313766i \(0.101591\pi\)
\(360\) 203.929i 0.566469i
\(361\) 47.1582 0.130632
\(362\) 465.191 + 465.191i 1.28506 + 1.28506i
\(363\) 67.4585 + 67.4585i 0.185836 + 0.185836i
\(364\) −10.0467 + 10.0467i −0.0276008 + 0.0276008i
\(365\) 457.792i 1.25423i
\(366\) 180.995i 0.494521i
\(367\) −72.8879 + 72.8879i −0.198605 + 0.198605i −0.799402 0.600797i \(-0.794850\pi\)
0.600797 + 0.799402i \(0.294850\pi\)
\(368\) −79.3142 −0.215528
\(369\) −141.411 −0.383228
\(370\) 1225.17i 3.31127i
\(371\) 619.541i 1.66992i
\(372\) −142.476 −0.382999
\(373\) 499.449 499.449i 1.33900 1.33900i 0.441979 0.897025i \(-0.354277\pi\)
0.897025 0.441979i \(-0.145723\pi\)
\(374\) 211.989 211.989i 0.566814 0.566814i
\(375\) 225.919 0.602451
\(376\) −123.117 + 123.117i −0.327439 + 0.327439i
\(377\) 3.81750 3.81750i 0.0101260 0.0101260i
\(378\) 429.309i 1.13574i
\(379\) −421.103 −1.11109 −0.555545 0.831486i \(-0.687490\pi\)
−0.555545 + 0.831486i \(0.687490\pi\)
\(380\) 312.853 312.853i 0.823297 0.823297i
\(381\) −98.8771 98.8771i −0.259520 0.259520i
\(382\) 588.592 588.592i 1.54082 1.54082i
\(383\) −404.963 404.963i −1.05735 1.05735i −0.998253 0.0590925i \(-0.981179\pi\)
−0.0590925 0.998253i \(-0.518821\pi\)
\(384\) −92.5838 −0.241104
\(385\) 431.346 1.12038
\(386\) −332.781 + 332.781i −0.862127 + 0.862127i
\(387\) 126.471 0.326798
\(388\) 24.3263 0.0626966
\(389\) 80.5272 + 80.5272i 0.207011 + 0.207011i 0.802996 0.595985i \(-0.203238\pi\)
−0.595985 + 0.802996i \(0.703238\pi\)
\(390\) −12.1567 −0.0311710
\(391\) 63.4895 + 63.4895i 0.162377 + 0.162377i
\(392\) 84.3011 + 84.3011i 0.215054 + 0.215054i
\(393\) 183.058i 0.465795i
\(394\) 282.346 + 432.536i 0.716614 + 1.09781i
\(395\) −50.2030 −0.127096
\(396\) 84.9406 84.9406i 0.214496 0.214496i
\(397\) 436.406 436.406i 1.09926 1.09926i 0.104761 0.994497i \(-0.466592\pi\)
0.994497 0.104761i \(-0.0334077\pi\)
\(398\) 159.249i 0.400123i
\(399\) −120.954 + 120.954i −0.303143 + 0.303143i
\(400\) 970.727i 2.42682i
\(401\) 275.830i 0.687855i −0.938996 0.343927i \(-0.888243\pi\)
0.938996 0.343927i \(-0.111757\pi\)
\(402\) −195.702 195.702i −0.486821 0.486821i
\(403\) 25.3665i 0.0629442i
\(404\) 275.078i 0.680887i
\(405\) 331.306 331.306i 0.818039 0.818039i
\(406\) 181.088 + 181.088i 0.446030 + 0.446030i
\(407\) −199.716 + 199.716i −0.490704 + 0.490704i
\(408\) 46.3819 + 46.3819i 0.113681 + 0.113681i
\(409\) 392.872i 0.960567i 0.877113 + 0.480284i \(0.159466\pi\)
−0.877113 + 0.480284i \(0.840534\pi\)
\(410\) 404.792 0.987297
\(411\) −178.771 178.771i −0.434967 0.434967i
\(412\) −85.0979 85.0979i −0.206548 0.206548i
\(413\) 17.7551i 0.0429906i
\(414\) 60.8346 + 60.8346i 0.146943 + 0.146943i
\(415\) −330.686 330.686i −0.796833 0.796833i
\(416\) 20.1919i 0.0485382i
\(417\) 114.537 0.274669
\(418\) 243.912 0.583522
\(419\) 330.235i 0.788149i −0.919078 0.394075i \(-0.871065\pi\)
0.919078 0.394075i \(-0.128935\pi\)
\(420\) 241.146i 0.574158i
\(421\) 312.913 + 312.913i 0.743260 + 0.743260i 0.973204 0.229944i \(-0.0738542\pi\)
−0.229944 + 0.973204i \(0.573854\pi\)
\(422\) −656.391 −1.55543
\(423\) 469.641 1.11026
\(424\) 136.675 + 136.675i 0.322347 + 0.322347i
\(425\) −777.048 + 777.048i −1.82835 + 1.82835i
\(426\) 208.586 208.586i 0.489639 0.489639i
\(427\) 639.221i 1.49700i
\(428\) −550.852 −1.28704
\(429\) −1.98168 1.98168i −0.00461930 0.00461930i
\(430\) −362.025 −0.841919
\(431\) 25.5939 0.0593827 0.0296913 0.999559i \(-0.490548\pi\)
0.0296913 + 0.999559i \(0.490548\pi\)
\(432\) 235.508 + 235.508i 0.545158 + 0.545158i
\(433\) 679.762i 1.56989i 0.619566 + 0.784944i \(0.287308\pi\)
−0.619566 + 0.784944i \(0.712692\pi\)
\(434\) 1203.29 2.77256
\(435\) 91.6297i 0.210643i
\(436\) −186.961 −0.428809
\(437\) 73.0505i 0.167164i
\(438\) −99.7670 99.7670i −0.227779 0.227779i
\(439\) −63.7721 63.7721i −0.145267 0.145267i 0.630733 0.776000i \(-0.282754\pi\)
−0.776000 + 0.630733i \(0.782754\pi\)
\(440\) 95.1579 95.1579i 0.216268 0.216268i
\(441\) 321.574i 0.729192i
\(442\) 21.1002 21.1002i 0.0477381 0.0477381i
\(443\) 109.670 0.247563 0.123781 0.992310i \(-0.460498\pi\)
0.123781 + 0.992310i \(0.460498\pi\)
\(444\) 111.653 + 111.653i 0.251470 + 0.251470i
\(445\) −375.463 −0.843736
\(446\) −194.281 194.281i −0.435608 0.435608i
\(447\) 132.237 0.295832
\(448\) −230.312 −0.514090
\(449\) 441.656i 0.983643i −0.870696 0.491822i \(-0.836331\pi\)
0.870696 0.491822i \(-0.163669\pi\)
\(450\) −744.555 + 744.555i −1.65457 + 1.65457i
\(451\) 65.9857 + 65.9857i 0.146310 + 0.146310i
\(452\) 165.677 165.677i 0.366542 0.366542i
\(453\) −91.2381 −0.201409
\(454\) 180.919 0.398500
\(455\) 42.9339 0.0943602
\(456\) 53.3667i 0.117032i
\(457\) −147.026 −0.321719 −0.160860 0.986977i \(-0.551427\pi\)
−0.160860 + 0.986977i \(0.551427\pi\)
\(458\) 495.049i 1.08089i
\(459\) 377.040i 0.821437i
\(460\) −72.8204 72.8204i −0.158305 0.158305i
\(461\) 51.9508 51.9508i 0.112692 0.112692i −0.648512 0.761204i \(-0.724609\pi\)
0.761204 + 0.648512i \(0.224609\pi\)
\(462\) 94.0035 94.0035i 0.203471 0.203471i
\(463\) −186.723 + 186.723i −0.403290 + 0.403290i −0.879391 0.476101i \(-0.842050\pi\)
0.476101 + 0.879391i \(0.342050\pi\)
\(464\) 198.681 0.428192
\(465\) 304.430 + 304.430i 0.654688 + 0.654688i
\(466\) −647.476 + 647.476i −1.38943 + 1.38943i
\(467\) −120.368 + 120.368i −0.257748 + 0.257748i −0.824137 0.566390i \(-0.808340\pi\)
0.566390 + 0.824137i \(0.308340\pi\)
\(468\) 8.45454 8.45454i 0.0180653 0.0180653i
\(469\) 691.162 + 691.162i 1.47369 + 1.47369i
\(470\) −1344.35 −2.86033
\(471\) 36.9872 + 36.9872i 0.0785290 + 0.0785290i
\(472\) 3.91690 + 3.91690i 0.00829853 + 0.00829853i
\(473\) −59.0142 59.0142i −0.124766 0.124766i
\(474\) −10.9408 + 10.9408i −0.0230818 + 0.0230818i
\(475\) −894.066 −1.88224
\(476\) 418.554 + 418.554i 0.879316 + 0.879316i
\(477\) 521.358i 1.09299i
\(478\) 749.065 749.065i 1.56708 1.56708i
\(479\) −303.233 −0.633054 −0.316527 0.948584i \(-0.602517\pi\)
−0.316527 + 0.948584i \(0.602517\pi\)
\(480\) −242.328 242.328i −0.504850 0.504850i
\(481\) −19.8787 + 19.8787i −0.0413279 + 0.0413279i
\(482\) 208.951 0.433509
\(483\) 28.1536 + 28.1536i 0.0582890 + 0.0582890i
\(484\) 268.590 0.554937
\(485\) −51.9783 51.9783i −0.107172 0.107172i
\(486\) 553.017i 1.13790i
\(487\) 105.371i 0.216367i 0.994131 + 0.108184i \(0.0345034\pi\)
−0.994131 + 0.108184i \(0.965497\pi\)
\(488\) 141.017 + 141.017i 0.288968 + 0.288968i
\(489\) −118.170 118.170i −0.241657 0.241657i
\(490\) 920.510i 1.87859i
\(491\) 115.702i 0.235646i −0.993035 0.117823i \(-0.962408\pi\)
0.993035 0.117823i \(-0.0375916\pi\)
\(492\) 36.8896 36.8896i 0.0749789 0.0749789i
\(493\) −159.040 159.040i −0.322597 0.322597i
\(494\) 24.2778 0.0491453
\(495\) −362.988 −0.733308
\(496\) 660.097 660.097i 1.33084 1.33084i
\(497\) −736.665 + 736.665i −1.48222 + 1.48222i
\(498\) −144.133 −0.289424
\(499\) 498.032 0.998060 0.499030 0.866585i \(-0.333690\pi\)
0.499030 + 0.866585i \(0.333690\pi\)
\(500\) 449.755 449.755i 0.899509 0.899509i
\(501\) 280.014i 0.558910i
\(502\) −56.8781 + 56.8781i −0.113303 + 0.113303i
\(503\) 889.271i 1.76793i −0.467550 0.883967i \(-0.654863\pi\)
0.467550 0.883967i \(-0.345137\pi\)
\(504\) −156.958 156.958i −0.311424 0.311424i
\(505\) −587.764 + 587.764i −1.16389 + 1.16389i
\(506\) 56.7736i 0.112201i
\(507\) 121.829 + 121.829i 0.240294 + 0.240294i
\(508\) −393.684 −0.774969
\(509\) 121.369 121.369i 0.238446 0.238446i −0.577760 0.816206i \(-0.696073\pi\)
0.816206 + 0.577760i \(0.196073\pi\)
\(510\) 506.458i 0.993056i
\(511\) 352.348 + 352.348i 0.689527 + 0.689527i
\(512\) −364.946 + 364.946i −0.712785 + 0.712785i
\(513\) 216.910 216.910i 0.422826 0.422826i
\(514\) 611.529 611.529i 1.18974 1.18974i
\(515\) 363.660i 0.706136i
\(516\) −32.9922 + 32.9922i −0.0639384 + 0.0639384i
\(517\) −219.145 219.145i −0.423878 0.423878i
\(518\) −942.973 942.973i −1.82041 1.82041i
\(519\) 238.548 + 238.548i 0.459631 + 0.459631i
\(520\) 9.47151 9.47151i 0.0182145 0.0182145i
\(521\) 460.242i 0.883382i 0.897167 + 0.441691i \(0.145621\pi\)
−0.897167 + 0.441691i \(0.854379\pi\)
\(522\) −152.390 152.390i −0.291935 0.291935i
\(523\) 189.728 + 189.728i 0.362768 + 0.362768i 0.864831 0.502063i \(-0.167425\pi\)
−0.502063 + 0.864831i \(0.667425\pi\)
\(524\) 364.426 + 364.426i 0.695470 + 0.695470i
\(525\) −344.572 + 344.572i −0.656327 + 0.656327i
\(526\) −234.810 −0.446406
\(527\) −1056.79 −2.00529
\(528\) 103.136i 0.195334i
\(529\) −511.997 −0.967857
\(530\) 1492.40i 2.81584i
\(531\) 14.9414i 0.0281382i
\(532\) 481.586i 0.905236i
\(533\) 6.56787 + 6.56787i 0.0123224 + 0.0123224i
\(534\) −81.8248 + 81.8248i −0.153230 + 0.153230i
\(535\) 1177.02 + 1177.02i 2.20003 + 2.20003i
\(536\) 304.950 0.568937
\(537\) 242.077i 0.450794i
\(538\) 1284.44i 2.38744i
\(539\) −150.054 + 150.054i −0.278392 + 0.278392i
\(540\) 432.452i 0.800837i
\(541\) −368.331 + 368.331i −0.680833 + 0.680833i −0.960188 0.279355i \(-0.909879\pi\)
0.279355 + 0.960188i \(0.409879\pi\)
\(542\) 102.492i 0.189099i
\(543\) −181.168 181.168i −0.333642 0.333642i
\(544\) 841.211 1.54634
\(545\) 399.482 + 399.482i 0.732994 + 0.732994i
\(546\) 9.35662 9.35662i 0.0171367 0.0171367i
\(547\) 363.420 363.420i 0.664388 0.664388i −0.292023 0.956411i \(-0.594328\pi\)
0.956411 + 0.292023i \(0.0943284\pi\)
\(548\) −711.787 −1.29888
\(549\) 537.919i 0.979817i
\(550\) 694.852 1.26337
\(551\) 182.991i 0.332107i
\(552\) 12.4217 0.0225032
\(553\) 38.6396 38.6396i 0.0698727 0.0698727i
\(554\) 1175.16i 2.12122i
\(555\) 477.139i 0.859711i
\(556\) 228.017 228.017i 0.410103 0.410103i
\(557\) 112.919i 0.202728i −0.994849 0.101364i \(-0.967679\pi\)
0.994849 0.101364i \(-0.0323206\pi\)
\(558\) −1012.60 −1.81469
\(559\) −5.87396 5.87396i −0.0105080 0.0105080i
\(560\) 1117.24 + 1117.24i 1.99508 + 1.99508i
\(561\) −82.5585 + 82.5585i −0.147163 + 0.147163i
\(562\) 797.214i 1.41853i
\(563\) 539.374i 0.958035i 0.877805 + 0.479018i \(0.159007\pi\)
−0.877805 + 0.479018i \(0.840993\pi\)
\(564\) −122.514 + 122.514i −0.217224 + 0.217224i
\(565\) −708.009 −1.25311
\(566\) −72.8163 −0.128651
\(567\) 509.991i 0.899454i
\(568\) 325.027i 0.572230i
\(569\) 618.784 1.08749 0.543747 0.839249i \(-0.317005\pi\)
0.543747 + 0.839249i \(0.317005\pi\)
\(570\) −291.364 + 291.364i −0.511164 + 0.511164i
\(571\) −222.155 + 222.155i −0.389063 + 0.389063i −0.874353 0.485290i \(-0.838714\pi\)
0.485290 + 0.874353i \(0.338714\pi\)
\(572\) −7.89016 −0.0137940
\(573\) −229.226 + 229.226i −0.400045 + 0.400045i
\(574\) −311.555 + 311.555i −0.542779 + 0.542779i
\(575\) 208.105i 0.361921i
\(576\) 193.813 0.336481
\(577\) 360.038 360.038i 0.623982 0.623982i −0.322565 0.946547i \(-0.604545\pi\)
0.946547 + 0.322565i \(0.104545\pi\)
\(578\) −343.238 343.238i −0.593837 0.593837i
\(579\) 129.601 129.601i 0.223836 0.223836i
\(580\) 182.414 + 182.414i 0.314507 + 0.314507i
\(581\) 509.036 0.876138
\(582\) −22.6554 −0.0389267
\(583\) −243.278 + 243.278i −0.417286 + 0.417286i
\(584\) 155.461 0.266200
\(585\) −36.1299 −0.0617605
\(586\) −934.718 934.718i −1.59508 1.59508i
\(587\) 850.848 1.44949 0.724743 0.689020i \(-0.241959\pi\)
0.724743 + 0.689020i \(0.241959\pi\)
\(588\) 83.8882 + 83.8882i 0.142667 + 0.142667i
\(589\) −607.967 607.967i −1.03220 1.03220i
\(590\) 42.7699i 0.0724913i
\(591\) −109.959 168.450i −0.186056 0.285026i
\(592\) −1034.58 −1.74761
\(593\) −457.521 + 457.521i −0.771536 + 0.771536i −0.978375 0.206839i \(-0.933682\pi\)
0.206839 + 0.978375i \(0.433682\pi\)
\(594\) −168.578 + 168.578i −0.283802 + 0.283802i
\(595\) 1788.66i 3.00616i
\(596\) 263.254 263.254i 0.441701 0.441701i
\(597\) 62.0192i 0.103885i
\(598\) 5.65095i 0.00944974i
\(599\) −188.629 188.629i −0.314906 0.314906i 0.531901 0.846807i \(-0.321478\pi\)
−0.846807 + 0.531901i \(0.821478\pi\)
\(600\) 152.030i 0.253383i
\(601\) 739.711i 1.23080i −0.788215 0.615400i \(-0.788994\pi\)
0.788215 0.615400i \(-0.211006\pi\)
\(602\) 278.639 278.639i 0.462855 0.462855i
\(603\) −581.629 581.629i −0.964559 0.964559i
\(604\) −181.635 + 181.635i −0.300719 + 0.300719i
\(605\) −573.899 573.899i −0.948594 0.948594i
\(606\) 256.184i 0.422745i
\(607\) −235.745 −0.388378 −0.194189 0.980964i \(-0.562207\pi\)
−0.194189 + 0.980964i \(0.562207\pi\)
\(608\) 483.945 + 483.945i 0.795963 + 0.795963i
\(609\) −70.5244 70.5244i −0.115804 0.115804i
\(610\) 1539.80i 2.52427i
\(611\) −21.8126 21.8126i −0.0356998 0.0356998i
\(612\) −352.223 352.223i −0.575528 0.575528i
\(613\) 986.467i 1.60924i −0.593787 0.804622i \(-0.702368\pi\)
0.593787 0.804622i \(-0.297632\pi\)
\(614\) −1452.97 −2.36640
\(615\) −157.645 −0.256334
\(616\) 146.480i 0.237792i
\(617\) 887.836i 1.43896i 0.694515 + 0.719478i \(0.255619\pi\)
−0.694515 + 0.719478i \(0.744381\pi\)
\(618\) 79.2527 + 79.2527i 0.128241 + 0.128241i
\(619\) 336.542 0.543686 0.271843 0.962342i \(-0.412367\pi\)
0.271843 + 0.962342i \(0.412367\pi\)
\(620\) 1212.10 1.95501
\(621\) −50.4884 50.4884i −0.0813017 0.0813017i
\(622\) 560.219 560.219i 0.900673 0.900673i
\(623\) 288.981 288.981i 0.463855 0.463855i
\(624\) 10.2656i 0.0164513i
\(625\) −660.301 −1.05648
\(626\) 142.250 + 142.250i 0.227237 + 0.227237i
\(627\) −94.9911 −0.151501
\(628\) 147.266 0.234500
\(629\) 828.165 + 828.165i 1.31664 + 1.31664i
\(630\) 1713.87i 2.72043i
\(631\) −1073.26 −1.70089 −0.850447 0.526060i \(-0.823669\pi\)
−0.850447 + 0.526060i \(0.823669\pi\)
\(632\) 17.0483i 0.0269752i
\(633\) 255.630 0.403839
\(634\) 810.902i 1.27903i
\(635\) 841.191 + 841.191i 1.32471 + 1.32471i
\(636\) 136.006 + 136.006i 0.213845 + 0.213845i
\(637\) −14.9355 + 14.9355i −0.0234467 + 0.0234467i
\(638\) 142.217i 0.222911i
\(639\) 619.921 619.921i 0.970142 0.970142i
\(640\) 787.652 1.23071
\(641\) 19.5087 + 19.5087i 0.0304347 + 0.0304347i 0.722160 0.691726i \(-0.243149\pi\)
−0.691726 + 0.722160i \(0.743149\pi\)
\(642\) 513.015 0.799090
\(643\) 362.004 + 362.004i 0.562992 + 0.562992i 0.930156 0.367164i \(-0.119671\pi\)
−0.367164 + 0.930156i \(0.619671\pi\)
\(644\) 112.095 0.174060
\(645\) 140.990 0.218589
\(646\) 1011.43i 1.56568i
\(647\) −387.472 + 387.472i −0.598875 + 0.598875i −0.940013 0.341138i \(-0.889188\pi\)
0.341138 + 0.940013i \(0.389188\pi\)
\(648\) 112.507 + 112.507i 0.173623 + 0.173623i
\(649\) −6.97198 + 6.97198i −0.0107426 + 0.0107426i
\(650\) 69.1619 0.106403
\(651\) −468.620 −0.719846
\(652\) −470.500 −0.721626
\(653\) 819.997i 1.25574i −0.778319 0.627869i \(-0.783927\pi\)
0.778319 0.627869i \(-0.216073\pi\)
\(654\) 174.119 0.266236
\(655\) 1557.35i 2.37764i
\(656\) 341.823i 0.521072i
\(657\) −296.509 296.509i −0.451308 0.451308i
\(658\) 1034.71 1034.71i 1.57250 1.57250i
\(659\) −614.405 + 614.405i −0.932330 + 0.932330i −0.997851 0.0655216i \(-0.979129\pi\)
0.0655216 + 0.997851i \(0.479129\pi\)
\(660\) 94.6918 94.6918i 0.143472 0.143472i
\(661\) 353.118 0.534218 0.267109 0.963666i \(-0.413932\pi\)
0.267109 + 0.963666i \(0.413932\pi\)
\(662\) 529.291 + 529.291i 0.799533 + 0.799533i
\(663\) −8.21744 + 8.21744i −0.0123943 + 0.0123943i
\(664\) 112.297 112.297i 0.169122 0.169122i
\(665\) 1029.01 1029.01i 1.54739 1.54739i
\(666\) 793.534 + 793.534i 1.19149 + 1.19149i
\(667\) −42.5933 −0.0638581
\(668\) −557.445 557.445i −0.834499 0.834499i
\(669\) 75.6624 + 75.6624i 0.113098 + 0.113098i
\(670\) 1664.92 + 1664.92i 2.48496 + 2.48496i
\(671\) −251.005 + 251.005i −0.374077 + 0.374077i
\(672\) 373.024 0.555095
\(673\) 202.588 + 202.588i 0.301022 + 0.301022i 0.841414 0.540391i \(-0.181724\pi\)
−0.540391 + 0.841414i \(0.681724\pi\)
\(674\) 992.232i 1.47216i
\(675\) 617.927 617.927i 0.915448 0.915448i
\(676\) 485.069 0.717557
\(677\) 578.791 + 578.791i 0.854935 + 0.854935i 0.990736 0.135801i \(-0.0433608\pi\)
−0.135801 + 0.990736i \(0.543361\pi\)
\(678\) −154.297 + 154.297i −0.227577 + 0.227577i
\(679\) 80.0121 0.117838
\(680\) −394.591 394.591i −0.580281 0.580281i
\(681\) −70.4585 −0.103463
\(682\) 472.502 + 472.502i 0.692818 + 0.692818i
\(683\) 750.269i 1.09849i −0.835661 0.549245i \(-0.814915\pi\)
0.835661 0.549245i \(-0.185085\pi\)
\(684\) 405.265i 0.592493i
\(685\) 1520.89 + 1520.89i 2.22027 + 2.22027i
\(686\) 150.552 + 150.552i 0.219463 + 0.219463i
\(687\) 192.796i 0.280634i
\(688\) 305.709i 0.444345i
\(689\) −24.2146 + 24.2146i −0.0351445 + 0.0351445i
\(690\) 67.8185 + 67.8185i 0.0982876 + 0.0982876i
\(691\) −308.137 −0.445929 −0.222965 0.974827i \(-0.571573\pi\)
−0.222965 + 0.974827i \(0.571573\pi\)
\(692\) 949.793 1.37253
\(693\) 279.380 279.380i 0.403146 0.403146i
\(694\) 338.183 338.183i 0.487296 0.487296i
\(695\) −974.417 −1.40204
\(696\) −31.1163 −0.0447074
\(697\) 273.623 273.623i 0.392572 0.392572i
\(698\) 483.460i 0.692636i
\(699\) 252.158 252.158i 0.360741 0.360741i
\(700\) 1371.93i 1.95990i
\(701\) −503.113 503.113i −0.717708 0.717708i 0.250428 0.968135i \(-0.419429\pi\)
−0.968135 + 0.250428i \(0.919429\pi\)
\(702\) −16.7794 + 16.7794i −0.0239023 + 0.0239023i
\(703\) 952.880i 1.35545i
\(704\) −90.4377 90.4377i −0.128463 0.128463i
\(705\) 523.556 0.742633
\(706\) 94.8024 94.8024i 0.134281 0.134281i
\(707\) 904.766i 1.27973i
\(708\) 3.89772 + 3.89772i 0.00550526 + 0.00550526i
\(709\) 707.551 707.551i 0.997957 0.997957i −0.00204137 0.999998i \(-0.500650\pi\)
0.999998 + 0.00204137i \(0.000649790\pi\)
\(710\) −1774.53 + 1774.53i −2.49934 + 2.49934i
\(711\) −32.5161 + 32.5161i −0.0457330 + 0.0457330i
\(712\) 127.503i 0.179077i
\(713\) −141.512 + 141.512i −0.198474 + 0.198474i
\(714\) −389.805 389.805i −0.545945 0.545945i
\(715\) 16.8590 + 16.8590i 0.0235791 + 0.0235791i
\(716\) −481.920 481.920i −0.673073 0.673073i
\(717\) −291.722 + 291.722i −0.406864 + 0.406864i
\(718\) 846.287i 1.17867i
\(719\) 222.026 + 222.026i 0.308798 + 0.308798i 0.844443 0.535645i \(-0.179932\pi\)
−0.535645 + 0.844443i \(0.679932\pi\)
\(720\) −940.186 940.186i −1.30581 1.30581i
\(721\) −279.897 279.897i −0.388207 0.388207i
\(722\) −87.4329 + 87.4329i −0.121098 + 0.121098i
\(723\) −81.3756 −0.112553
\(724\) −721.329 −0.996310
\(725\) 521.300i 0.719034i
\(726\) −250.141 −0.344546
\(727\) 328.362i 0.451667i −0.974166 0.225834i \(-0.927489\pi\)
0.974166 0.225834i \(-0.0725106\pi\)
\(728\) 14.5798i 0.0200272i
\(729\) 270.035i 0.370419i
\(730\) 848.762 + 848.762i 1.16269 + 1.16269i
\(731\) −244.714 + 244.714i −0.334766 + 0.334766i
\(732\) 140.326 + 140.326i 0.191702 + 0.191702i
\(733\) −67.1611 −0.0916250 −0.0458125 0.998950i \(-0.514588\pi\)
−0.0458125 + 0.998950i \(0.514588\pi\)
\(734\) 270.273i 0.368220i
\(735\) 358.491i 0.487742i
\(736\) 112.644 112.644i 0.153049 0.153049i
\(737\) 542.803i 0.736503i
\(738\) 262.181 262.181i 0.355259 0.355259i
\(739\) 735.935i 0.995852i −0.867220 0.497926i \(-0.834095\pi\)
0.867220 0.497926i \(-0.165905\pi\)
\(740\) −949.877 949.877i −1.28362 1.28362i
\(741\) −9.45492 −0.0127597
\(742\) −1148.65 1148.65i −1.54805 1.54805i
\(743\) 720.697 720.697i 0.969983 0.969983i −0.0295796 0.999562i \(-0.509417\pi\)
0.999562 + 0.0295796i \(0.00941684\pi\)
\(744\) −103.381 + 103.381i −0.138953 + 0.138953i
\(745\) −1125.00 −1.51006
\(746\) 1851.99i 2.48256i
\(747\) −428.366 −0.573448
\(748\) 328.711i 0.439453i
\(749\) −1811.82 −2.41899
\(750\) −418.862 + 418.862i −0.558482 + 0.558482i
\(751\) 677.410i 0.902011i 0.892521 + 0.451005i \(0.148934\pi\)
−0.892521 + 0.451005i \(0.851066\pi\)
\(752\) 1135.23i 1.50961i
\(753\) 22.1510 22.1510i 0.0294171 0.0294171i
\(754\) 14.1556i 0.0187739i
\(755\) 776.203 1.02808
\(756\) −332.844 332.844i −0.440270 0.440270i
\(757\) 459.992 + 459.992i 0.607651 + 0.607651i 0.942332 0.334680i \(-0.108628\pi\)
−0.334680 + 0.942332i \(0.608628\pi\)
\(758\) 780.739 780.739i 1.03000 1.03000i
\(759\) 22.1104i 0.0291309i
\(760\) 454.014i 0.597387i
\(761\) 225.532 225.532i 0.296362 0.296362i −0.543225 0.839587i \(-0.682797\pi\)
0.839587 + 0.543225i \(0.182797\pi\)
\(762\) 366.643 0.481158
\(763\) −614.936 −0.805945
\(764\) 912.675i 1.19460i
\(765\) 1505.20i 1.96758i
\(766\) 1501.63 1.96035
\(767\) −0.693954 + 0.693954i −0.000904764 + 0.000904764i
\(768\) 242.000 242.000i 0.315105 0.315105i
\(769\) 274.038 0.356357 0.178178 0.983998i \(-0.442980\pi\)
0.178178 + 0.983998i \(0.442980\pi\)
\(770\) −799.730 + 799.730i −1.03861 + 1.03861i
\(771\) −238.159 + 238.159i −0.308896 + 0.308896i
\(772\) 516.012i 0.668410i
\(773\) −205.270 −0.265550 −0.132775 0.991146i \(-0.542389\pi\)
−0.132775 + 0.991146i \(0.542389\pi\)
\(774\) −234.481 + 234.481i −0.302947 + 0.302947i
\(775\) −1731.96 1731.96i −2.23479 2.23479i
\(776\) 17.6512 17.6512i 0.0227464 0.0227464i
\(777\) 367.239 + 367.239i 0.472637 + 0.472637i
\(778\) −298.600 −0.383805
\(779\) 314.828 0.404144
\(780\) 9.42513 9.42513i 0.0120835 0.0120835i
\(781\) −578.538 −0.740766
\(782\) −235.423 −0.301053
\(783\) 126.473 + 126.473i 0.161523 + 0.161523i
\(784\) −777.317 −0.991476
\(785\) −314.666 314.666i −0.400849 0.400849i
\(786\) −339.395 339.395i −0.431800 0.431800i
\(787\) 572.372i 0.727283i 0.931539 + 0.363641i \(0.118467\pi\)
−0.931539 + 0.363641i \(0.881533\pi\)
\(788\) −554.251 116.443i −0.703364 0.147771i
\(789\) 91.4462 0.115901
\(790\) 93.0780 93.0780i 0.117820 0.117820i
\(791\) 544.932 544.932i 0.688915 0.688915i
\(792\) 123.266i 0.155639i
\(793\) −24.9838 + 24.9838i −0.0315054 + 0.0315054i
\(794\) 1618.22i 2.03806i
\(795\) 581.211i 0.731083i
\(796\) 123.466 + 123.466i 0.155108 + 0.155108i
\(797\) 71.8433i 0.0901421i −0.998984 0.0450711i \(-0.985649\pi\)
0.998984 0.0450711i \(-0.0143514\pi\)
\(798\) 448.506i 0.562038i
\(799\) −908.730 + 908.730i −1.13733 + 1.13733i
\(800\) 1378.65 + 1378.65i 1.72332 + 1.72332i
\(801\) −243.185 + 243.185i −0.303601 + 0.303601i
\(802\) 511.397 + 511.397i 0.637653 + 0.637653i
\(803\) 276.716i 0.344602i
\(804\) 303.457 0.377434
\(805\) −239.515 239.515i −0.297534 0.297534i
\(806\) 47.0303 + 47.0303i 0.0583503 + 0.0583503i
\(807\) 500.223i 0.619855i
\(808\) −199.598 199.598i −0.247027 0.247027i
\(809\) 839.505 + 839.505i 1.03771 + 1.03771i 0.999261 + 0.0384469i \(0.0122410\pi\)
0.0384469 + 0.999261i \(0.487759\pi\)
\(810\) 1228.50i 1.51667i
\(811\) 231.621 0.285599 0.142800 0.989752i \(-0.454390\pi\)
0.142800 + 0.989752i \(0.454390\pi\)
\(812\) −280.797 −0.345809
\(813\) 39.9152i 0.0490961i
\(814\) 740.562i 0.909781i
\(815\) 1005.33 + 1005.33i 1.23353 + 1.23353i
\(816\) −427.675 −0.524111
\(817\) −281.566 −0.344634
\(818\) −728.398 728.398i −0.890462 0.890462i
\(819\) 27.8080 27.8080i 0.0339536 0.0339536i
\(820\) −313.836 + 313.836i −0.382727 + 0.382727i
\(821\) 550.744i 0.670821i −0.942072 0.335410i \(-0.891125\pi\)
0.942072 0.335410i \(-0.108875\pi\)
\(822\) 662.896 0.806442
\(823\) 848.633 + 848.633i 1.03115 + 1.03115i 0.999499 + 0.0316463i \(0.0100750\pi\)
0.0316463 + 0.999499i \(0.489925\pi\)
\(824\) −123.495 −0.149872
\(825\) −270.609 −0.328011
\(826\) −32.9186 32.9186i −0.0398530 0.0398530i
\(827\) 744.994i 0.900839i −0.892817 0.450420i \(-0.851274\pi\)
0.892817 0.450420i \(-0.148726\pi\)
\(828\) −94.3305 −0.113926
\(829\) 651.677i 0.786101i 0.919517 + 0.393050i \(0.128580\pi\)
−0.919517 + 0.393050i \(0.871420\pi\)
\(830\) 1226.20 1.47735
\(831\) 457.662i 0.550737i
\(832\) −9.00169 9.00169i −0.0108193 0.0108193i
\(833\) 622.227 + 622.227i 0.746972 + 0.746972i
\(834\) −212.355 + 212.355i −0.254623 + 0.254623i
\(835\) 2382.20i 2.85294i
\(836\) −189.106 + 189.106i −0.226203 + 0.226203i
\(837\) 840.385 1.00404
\(838\) 612.266 + 612.266i 0.730627 + 0.730627i
\(839\) 413.702 0.493089 0.246545 0.969131i \(-0.420705\pi\)
0.246545 + 0.969131i \(0.420705\pi\)
\(840\) −174.976 174.976i −0.208305 0.208305i
\(841\) −734.304 −0.873132
\(842\) −1160.30 −1.37803
\(843\) 310.473i 0.368296i
\(844\) 508.902 508.902i 0.602965 0.602965i
\(845\) −1036.45 1036.45i −1.22657 1.22657i
\(846\) −870.730 + 870.730i −1.02923 + 1.02923i
\(847\) 883.424 1.04300
\(848\) −1260.24 −1.48614
\(849\) 28.3582 0.0334018
\(850\) 2881.35i 3.38982i
\(851\) 221.795 0.260628
\(852\) 323.435i 0.379618i
\(853\) 1132.63i 1.32782i −0.747813 0.663910i \(-0.768896\pi\)
0.747813 0.663910i \(-0.231104\pi\)
\(854\) −1185.14 1185.14i −1.38775 1.38775i
\(855\) −865.937 + 865.937i −1.01279 + 1.01279i
\(856\) −399.700 + 399.700i −0.466939 + 0.466939i
\(857\) 815.254 815.254i 0.951289 0.951289i −0.0475787 0.998867i \(-0.515150\pi\)
0.998867 + 0.0475787i \(0.0151505\pi\)
\(858\) 7.34820 0.00856433
\(859\) 386.924 + 386.924i 0.450436 + 0.450436i 0.895499 0.445063i \(-0.146819\pi\)
−0.445063 + 0.895499i \(0.646819\pi\)
\(860\) 280.679 280.679i 0.326371 0.326371i
\(861\) 121.334 121.334i 0.140923 0.140923i
\(862\) −47.4520 + 47.4520i −0.0550487 + 0.0550487i
\(863\) 78.1715 + 78.1715i 0.0905811 + 0.0905811i 0.750945 0.660364i \(-0.229598\pi\)
−0.660364 + 0.750945i \(0.729598\pi\)
\(864\) −668.951 −0.774248
\(865\) −2029.44 2029.44i −2.34617 2.34617i
\(866\) −1260.30 1260.30i −1.45531 1.45531i
\(867\) 133.673 + 133.673i 0.154179 + 0.154179i
\(868\) −932.917 + 932.917i −1.07479 + 1.07479i
\(869\) 30.3455 0.0349201
\(870\) −169.884 169.884i −0.195269 0.195269i
\(871\) 54.0277i 0.0620295i
\(872\) −135.659 + 135.659i −0.155572 + 0.155572i
\(873\) −67.3320 −0.0771272
\(874\) −135.438 135.438i −0.154963 0.154963i
\(875\) 1479.30 1479.30i 1.69063 1.69063i
\(876\) 154.699 0.176598
\(877\) −409.252 409.252i −0.466650 0.466650i 0.434178 0.900827i \(-0.357039\pi\)
−0.900827 + 0.434178i \(0.857039\pi\)
\(878\) 236.471 0.269329
\(879\) 364.024 + 364.024i 0.414134 + 0.414134i
\(880\) 877.424i 0.997073i
\(881\) 611.913i 0.694566i 0.937760 + 0.347283i \(0.112896\pi\)
−0.937760 + 0.347283i \(0.887104\pi\)
\(882\) 596.208 + 596.208i 0.675973 + 0.675973i
\(883\) −9.00464 9.00464i −0.0101978 0.0101978i 0.701990 0.712187i \(-0.252295\pi\)
−0.712187 + 0.701990i \(0.752295\pi\)
\(884\) 32.7181i 0.0370115i
\(885\) 16.6566i 0.0188211i
\(886\) −203.332 + 203.332i −0.229495 + 0.229495i
\(887\) −319.405 319.405i −0.360096 0.360096i 0.503752 0.863848i \(-0.331952\pi\)
−0.863848 + 0.503752i \(0.831952\pi\)
\(888\) 162.031 0.182467
\(889\) −1294.88 −1.45655
\(890\) 696.120 696.120i 0.782157 0.782157i
\(891\) −200.260 + 200.260i −0.224759 + 0.224759i
\(892\) 301.254 0.337729
\(893\) −1045.58 −1.17086
\(894\) −245.172 + 245.172i −0.274241 + 0.274241i
\(895\) 2059.45i 2.30106i
\(896\) −606.230 + 606.230i −0.676596 + 0.676596i
\(897\) 2.20075i 0.00245345i
\(898\) 818.844 + 818.844i 0.911853 + 0.911853i
\(899\) 354.486 354.486i 0.394311 0.394311i
\(900\) 1154.51i 1.28279i
\(901\) 1008.80 + 1008.80i 1.11964 + 1.11964i
\(902\) −244.679 −0.271263
\(903\) −108.515 + 108.515i −0.120172 + 0.120172i
\(904\) 240.431i 0.265964i
\(905\) 1541.27 + 1541.27i 1.70307 + 1.70307i
\(906\) 169.158 169.158i 0.186709 0.186709i
\(907\) −903.099 + 903.099i −0.995699 + 0.995699i −0.999991 0.00429189i \(-0.998634\pi\)
0.00429189 + 0.999991i \(0.498634\pi\)
\(908\) −140.267 + 140.267i −0.154479 + 0.154479i
\(909\) 761.382i 0.837604i
\(910\) −79.6009 + 79.6009i −0.0874735 + 0.0874735i
\(911\) −438.747 438.747i −0.481610 0.481610i 0.424035 0.905646i \(-0.360613\pi\)
−0.905646 + 0.424035i \(0.860613\pi\)
\(912\) −246.040 246.040i −0.269780 0.269780i
\(913\) 199.885 + 199.885i 0.218932 + 0.218932i
\(914\) 272.590 272.590i 0.298239 0.298239i
\(915\) 599.673i 0.655380i
\(916\) −383.813 383.813i −0.419010 0.419010i
\(917\) 1198.64 + 1198.64i 1.30714 + 1.30714i
\(918\) 699.044 + 699.044i 0.761486 + 0.761486i
\(919\) 869.501 869.501i 0.946138 0.946138i −0.0524835 0.998622i \(-0.516714\pi\)
0.998622 + 0.0524835i \(0.0167137\pi\)
\(920\) −105.677 −0.114867
\(921\) 565.855 0.614392
\(922\) 192.637i 0.208934i
\(923\) −57.5847 −0.0623886
\(924\) 145.763i 0.157752i
\(925\) 2714.54i 2.93464i
\(926\) 692.382i 0.747712i
\(927\) 235.540 + 235.540i 0.254089 + 0.254089i
\(928\) −282.172 + 282.172i −0.304065 + 0.304065i
\(929\) 869.767 + 869.767i 0.936240 + 0.936240i 0.998086 0.0618461i \(-0.0196988\pi\)
−0.0618461 + 0.998086i \(0.519699\pi\)
\(930\) −1128.85 −1.21381
\(931\) 715.930i 0.768990i
\(932\) 1003.98i 1.07723i
\(933\) −218.176 + 218.176i −0.233843 + 0.233843i
\(934\) 446.333i 0.477872i
\(935\) 702.361 702.361i 0.751189 0.751189i
\(936\) 12.2693i 0.0131082i
\(937\) 495.066 + 495.066i 0.528353 + 0.528353i 0.920081 0.391728i \(-0.128123\pi\)
−0.391728 + 0.920081i \(0.628123\pi\)
\(938\) −2562.87 −2.73228
\(939\) −55.3991 55.3991i −0.0589979 0.0589979i
\(940\) 1042.28 1042.28i 1.10881 1.10881i
\(941\) 243.881 243.881i 0.259172 0.259172i −0.565545 0.824717i \(-0.691334\pi\)
0.824717 + 0.565545i \(0.191334\pi\)
\(942\) −137.151 −0.145595
\(943\) 73.2802i 0.0777096i
\(944\) −36.1167 −0.0382592
\(945\) 1422.39i 1.50517i
\(946\) 218.828 0.231320
\(947\) 1158.75 1158.75i 1.22360 1.22360i 0.257262 0.966342i \(-0.417180\pi\)
0.966342 0.257262i \(-0.0828205\pi\)
\(948\) 16.9648i 0.0178954i
\(949\) 27.5428i 0.0290230i
\(950\) 1657.63 1657.63i 1.74487 1.74487i
\(951\) 315.804i 0.332076i
\(952\) 607.409 0.638034
\(953\) −1078.74 1078.74i −1.13194 1.13194i −0.989854 0.142091i \(-0.954617\pi\)
−0.142091 0.989854i \(-0.545383\pi\)
\(954\) 966.615 + 966.615i 1.01322 + 1.01322i
\(955\) 1950.13 1950.13i 2.04202 2.04202i
\(956\) 1161.51i 1.21496i
\(957\) 55.3862i 0.0578748i
\(958\) 562.204 562.204i 0.586851 0.586851i
\(959\) −2341.15 −2.44124
\(960\) 216.063 0.225066
\(961\) 1394.48i 1.45107i
\(962\) 73.7116i 0.0766233i
\(963\) 1524.69 1.58327
\(964\) −162.001 + 162.001i −0.168050 + 0.168050i
\(965\) −1102.57 + 1102.57i −1.14256 + 1.14256i
\(966\) −104.395 −0.108070
\(967\) 102.834 102.834i 0.106343 0.106343i −0.651933 0.758276i \(-0.726042\pi\)
0.758276 + 0.651933i \(0.226042\pi\)
\(968\) 194.889 194.889i 0.201332 0.201332i
\(969\) 393.900i 0.406502i
\(970\) 192.739 0.198700
\(971\) 719.327 719.327i 0.740810 0.740810i −0.231924 0.972734i \(-0.574502\pi\)
0.972734 + 0.231924i \(0.0745019\pi\)
\(972\) 428.756 + 428.756i 0.441107 + 0.441107i
\(973\) 749.977 749.977i 0.770788 0.770788i
\(974\) −195.361 195.361i −0.200576 0.200576i
\(975\) −26.9350 −0.0276256
\(976\) −1300.27 −1.33225
\(977\) −105.553 + 105.553i −0.108038 + 0.108038i −0.759059 0.651021i \(-0.774341\pi\)
0.651021 + 0.759059i \(0.274341\pi\)
\(978\) 438.183 0.448039
\(979\) 226.951 0.231819
\(980\) −713.674 713.674i −0.728239 0.728239i
\(981\) 517.483 0.527506
\(982\) 214.516 + 214.516i 0.218448 + 0.218448i
\(983\) 45.1105 + 45.1105i 0.0458907 + 0.0458907i 0.729680 0.683789i \(-0.239669\pi\)
−0.683789 + 0.729680i \(0.739669\pi\)
\(984\) 53.5344i 0.0544049i
\(985\) 935.470 + 1433.08i 0.949716 + 1.45491i
\(986\) 589.732 0.598106
\(987\) −402.964 + 402.964i −0.408272 + 0.408272i
\(988\) −18.8226 + 18.8226i −0.0190512 + 0.0190512i
\(989\) 65.5380i 0.0662670i
\(990\) 672.991 672.991i 0.679789 0.679789i
\(991\) 1821.25i 1.83779i −0.394500 0.918896i \(-0.629082\pi\)
0.394500 0.918896i \(-0.370918\pi\)
\(992\) 1874.98i 1.89010i
\(993\) −206.131 206.131i −0.207584 0.207584i
\(994\) 2731.60i 2.74809i
\(995\) 527.625i 0.530276i
\(996\) 111.747 111.747i 0.112196 0.112196i
\(997\) −132.251 132.251i −0.132649 0.132649i 0.637665 0.770314i \(-0.279900\pi\)
−0.770314 + 0.637665i \(0.779900\pi\)
\(998\) −923.368 + 923.368i −0.925218 + 0.925218i
\(999\) −658.576 658.576i −0.659235 0.659235i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.3.c.a.14.7 64
197.183 odd 4 inner 197.3.c.a.183.7 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.3.c.a.14.7 64 1.1 even 1 trivial
197.3.c.a.183.7 yes 64 197.183 odd 4 inner