Properties

Label 197.6.a.a.1.18
Level $197$
Weight $6$
Character 197.1
Self dual yes
Analytic conductor $31.596$
Analytic rank $1$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,6,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.5956125032\)
Analytic rank: \(1\)
Dimension: \(38\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.78681 q^{2} -17.1157 q^{3} -28.8073 q^{4} -96.1357 q^{5} +30.5825 q^{6} +140.530 q^{7} +108.651 q^{8} +49.9467 q^{9} +171.776 q^{10} +176.222 q^{11} +493.057 q^{12} -348.520 q^{13} -251.100 q^{14} +1645.43 q^{15} +727.695 q^{16} +1642.29 q^{17} -89.2453 q^{18} -138.460 q^{19} +2769.41 q^{20} -2405.26 q^{21} -314.876 q^{22} -144.967 q^{23} -1859.64 q^{24} +6117.08 q^{25} +622.739 q^{26} +3304.24 q^{27} -4048.28 q^{28} -5102.87 q^{29} -2940.07 q^{30} -95.4999 q^{31} -4777.09 q^{32} -3016.16 q^{33} -2934.46 q^{34} -13509.9 q^{35} -1438.83 q^{36} -8813.51 q^{37} +247.402 q^{38} +5965.16 q^{39} -10445.3 q^{40} -1895.44 q^{41} +4297.74 q^{42} +14050.5 q^{43} -5076.49 q^{44} -4801.66 q^{45} +259.029 q^{46} +19049.3 q^{47} -12455.0 q^{48} +2941.56 q^{49} -10930.1 q^{50} -28108.9 q^{51} +10039.9 q^{52} +1415.63 q^{53} -5904.05 q^{54} -16941.2 q^{55} +15268.7 q^{56} +2369.84 q^{57} +9117.86 q^{58} +12357.5 q^{59} -47400.4 q^{60} -30196.6 q^{61} +170.640 q^{62} +7018.99 q^{63} -14750.5 q^{64} +33505.2 q^{65} +5389.31 q^{66} +30511.7 q^{67} -47310.0 q^{68} +2481.22 q^{69} +24139.7 q^{70} +67506.1 q^{71} +5426.77 q^{72} -76337.4 q^{73} +15748.1 q^{74} -104698. q^{75} +3988.67 q^{76} +24764.4 q^{77} -10658.6 q^{78} -52240.4 q^{79} -69957.5 q^{80} -68691.4 q^{81} +3386.79 q^{82} +39800.8 q^{83} +69289.1 q^{84} -157883. q^{85} -25105.6 q^{86} +87339.1 q^{87} +19146.7 q^{88} -11353.4 q^{89} +8579.66 q^{90} -48977.4 q^{91} +4176.12 q^{92} +1634.55 q^{93} -34037.5 q^{94} +13311.0 q^{95} +81763.2 q^{96} +103709. q^{97} -5256.00 q^{98} +8801.72 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 8 q^{2} - 100 q^{3} + 512 q^{4} - 154 q^{5} - 216 q^{6} - 737 q^{7} - 261 q^{8} + 2510 q^{9} - 1567 q^{10} - 808 q^{11} - 3200 q^{12} - 2460 q^{13} - 1423 q^{14} - 3541 q^{15} + 5120 q^{16} - 2501 q^{17}+ \cdots - 108889 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.78681 −0.315866 −0.157933 0.987450i \(-0.550483\pi\)
−0.157933 + 0.987450i \(0.550483\pi\)
\(3\) −17.1157 −1.09797 −0.548986 0.835832i \(-0.684986\pi\)
−0.548986 + 0.835832i \(0.684986\pi\)
\(4\) −28.8073 −0.900228
\(5\) −96.1357 −1.71973 −0.859864 0.510523i \(-0.829452\pi\)
−0.859864 + 0.510523i \(0.829452\pi\)
\(6\) 30.5825 0.346812
\(7\) 140.530 1.08398 0.541992 0.840384i \(-0.317670\pi\)
0.541992 + 0.840384i \(0.317670\pi\)
\(8\) 108.651 0.600218
\(9\) 49.9467 0.205542
\(10\) 171.776 0.543204
\(11\) 176.222 0.439116 0.219558 0.975600i \(-0.429539\pi\)
0.219558 + 0.975600i \(0.429539\pi\)
\(12\) 493.057 0.988425
\(13\) −348.520 −0.571965 −0.285982 0.958235i \(-0.592320\pi\)
−0.285982 + 0.958235i \(0.592320\pi\)
\(14\) −251.100 −0.342394
\(15\) 1645.43 1.88821
\(16\) 727.695 0.710640
\(17\) 1642.29 1.37825 0.689124 0.724643i \(-0.257995\pi\)
0.689124 + 0.724643i \(0.257995\pi\)
\(18\) −89.2453 −0.0649238
\(19\) −138.460 −0.0879916 −0.0439958 0.999032i \(-0.514009\pi\)
−0.0439958 + 0.999032i \(0.514009\pi\)
\(20\) 2769.41 1.54815
\(21\) −2405.26 −1.19018
\(22\) −314.876 −0.138702
\(23\) −144.967 −0.0571414 −0.0285707 0.999592i \(-0.509096\pi\)
−0.0285707 + 0.999592i \(0.509096\pi\)
\(24\) −1859.64 −0.659023
\(25\) 6117.08 1.95746
\(26\) 622.739 0.180665
\(27\) 3304.24 0.872292
\(28\) −4048.28 −0.975832
\(29\) −5102.87 −1.12673 −0.563364 0.826208i \(-0.690493\pi\)
−0.563364 + 0.826208i \(0.690493\pi\)
\(30\) −2940.07 −0.596423
\(31\) −95.4999 −0.0178484 −0.00892419 0.999960i \(-0.502841\pi\)
−0.00892419 + 0.999960i \(0.502841\pi\)
\(32\) −4777.09 −0.824686
\(33\) −3016.16 −0.482136
\(34\) −2934.46 −0.435343
\(35\) −13509.9 −1.86416
\(36\) −1438.83 −0.185035
\(37\) −8813.51 −1.05839 −0.529194 0.848501i \(-0.677505\pi\)
−0.529194 + 0.848501i \(0.677505\pi\)
\(38\) 247.402 0.0277936
\(39\) 5965.16 0.628001
\(40\) −10445.3 −1.03221
\(41\) −1895.44 −0.176096 −0.0880482 0.996116i \(-0.528063\pi\)
−0.0880482 + 0.996116i \(0.528063\pi\)
\(42\) 4297.74 0.375939
\(43\) 14050.5 1.15883 0.579417 0.815032i \(-0.303280\pi\)
0.579417 + 0.815032i \(0.303280\pi\)
\(44\) −5076.49 −0.395304
\(45\) −4801.66 −0.353476
\(46\) 259.029 0.0180490
\(47\) 19049.3 1.25787 0.628933 0.777459i \(-0.283492\pi\)
0.628933 + 0.777459i \(0.283492\pi\)
\(48\) −12455.0 −0.780262
\(49\) 2941.56 0.175020
\(50\) −10930.1 −0.618298
\(51\) −28108.9 −1.51328
\(52\) 10039.9 0.514899
\(53\) 1415.63 0.0692244 0.0346122 0.999401i \(-0.488980\pi\)
0.0346122 + 0.999401i \(0.488980\pi\)
\(54\) −5904.05 −0.275528
\(55\) −16941.2 −0.755159
\(56\) 15268.7 0.650627
\(57\) 2369.84 0.0966122
\(58\) 9117.86 0.355896
\(59\) 12357.5 0.462168 0.231084 0.972934i \(-0.425773\pi\)
0.231084 + 0.972934i \(0.425773\pi\)
\(60\) −47400.4 −1.69982
\(61\) −30196.6 −1.03904 −0.519521 0.854458i \(-0.673890\pi\)
−0.519521 + 0.854458i \(0.673890\pi\)
\(62\) 170.640 0.00563771
\(63\) 7018.99 0.222804
\(64\) −14750.5 −0.450149
\(65\) 33505.2 0.983624
\(66\) 5389.31 0.152291
\(67\) 30511.7 0.830386 0.415193 0.909733i \(-0.363714\pi\)
0.415193 + 0.909733i \(0.363714\pi\)
\(68\) −47310.0 −1.24074
\(69\) 2481.22 0.0627396
\(70\) 24139.7 0.588825
\(71\) 67506.1 1.58927 0.794634 0.607089i \(-0.207663\pi\)
0.794634 + 0.607089i \(0.207663\pi\)
\(72\) 5426.77 0.123370
\(73\) −76337.4 −1.67660 −0.838302 0.545206i \(-0.816451\pi\)
−0.838302 + 0.545206i \(0.816451\pi\)
\(74\) 15748.1 0.334309
\(75\) −104698. −2.14924
\(76\) 3988.67 0.0792125
\(77\) 24764.4 0.475994
\(78\) −10658.6 −0.198365
\(79\) −52240.4 −0.941756 −0.470878 0.882198i \(-0.656063\pi\)
−0.470878 + 0.882198i \(0.656063\pi\)
\(80\) −69957.5 −1.22211
\(81\) −68691.4 −1.16329
\(82\) 3386.79 0.0556230
\(83\) 39800.8 0.634157 0.317079 0.948399i \(-0.397298\pi\)
0.317079 + 0.948399i \(0.397298\pi\)
\(84\) 69289.1 1.07144
\(85\) −157883. −2.37021
\(86\) −25105.6 −0.366037
\(87\) 87339.1 1.23712
\(88\) 19146.7 0.263565
\(89\) −11353.4 −0.151933 −0.0759665 0.997110i \(-0.524204\pi\)
−0.0759665 + 0.997110i \(0.524204\pi\)
\(90\) 8579.66 0.111651
\(91\) −48977.4 −0.620000
\(92\) 4176.12 0.0514403
\(93\) 1634.55 0.0195970
\(94\) −34037.5 −0.397318
\(95\) 13311.0 0.151322
\(96\) 81763.2 0.905482
\(97\) 103709. 1.11914 0.559571 0.828782i \(-0.310966\pi\)
0.559571 + 0.828782i \(0.310966\pi\)
\(98\) −5256.00 −0.0552828
\(99\) 8801.72 0.0902567
\(100\) −176217. −1.76217
\(101\) 41723.2 0.406981 0.203490 0.979077i \(-0.434771\pi\)
0.203490 + 0.979077i \(0.434771\pi\)
\(102\) 50225.3 0.477994
\(103\) 116579. 1.08275 0.541374 0.840782i \(-0.317904\pi\)
0.541374 + 0.840782i \(0.317904\pi\)
\(104\) −37867.1 −0.343304
\(105\) 231231. 2.04679
\(106\) −2529.46 −0.0218657
\(107\) 20396.3 0.172223 0.0861117 0.996285i \(-0.472556\pi\)
0.0861117 + 0.996285i \(0.472556\pi\)
\(108\) −95186.2 −0.785262
\(109\) −43938.3 −0.354224 −0.177112 0.984191i \(-0.556675\pi\)
−0.177112 + 0.984191i \(0.556675\pi\)
\(110\) 30270.8 0.238530
\(111\) 150849. 1.16208
\(112\) 102263. 0.770321
\(113\) −210370. −1.54985 −0.774923 0.632056i \(-0.782211\pi\)
−0.774923 + 0.632056i \(0.782211\pi\)
\(114\) −4234.46 −0.0305166
\(115\) 13936.5 0.0982677
\(116\) 147000. 1.01431
\(117\) −17407.4 −0.117563
\(118\) −22080.5 −0.145983
\(119\) 230790. 1.49400
\(120\) 178778. 1.13334
\(121\) −129997. −0.807178
\(122\) 53955.5 0.328198
\(123\) 32441.8 0.193349
\(124\) 2751.10 0.0160676
\(125\) −287646. −1.64658
\(126\) −12541.6 −0.0703763
\(127\) 249916. 1.37495 0.687473 0.726210i \(-0.258720\pi\)
0.687473 + 0.726210i \(0.258720\pi\)
\(128\) 179223. 0.966873
\(129\) −240484. −1.27237
\(130\) −59867.5 −0.310694
\(131\) −288544. −1.46904 −0.734521 0.678586i \(-0.762593\pi\)
−0.734521 + 0.678586i \(0.762593\pi\)
\(132\) 86887.5 0.434033
\(133\) −19457.8 −0.0953814
\(134\) −54518.7 −0.262291
\(135\) −317655. −1.50011
\(136\) 178437. 0.827250
\(137\) −76717.7 −0.349216 −0.174608 0.984638i \(-0.555866\pi\)
−0.174608 + 0.984638i \(0.555866\pi\)
\(138\) −4433.46 −0.0198173
\(139\) −292888. −1.28577 −0.642886 0.765962i \(-0.722263\pi\)
−0.642886 + 0.765962i \(0.722263\pi\)
\(140\) 389184. 1.67817
\(141\) −326042. −1.38110
\(142\) −120621. −0.501996
\(143\) −61417.0 −0.251159
\(144\) 36346.0 0.146066
\(145\) 490568. 1.93767
\(146\) 136401. 0.529583
\(147\) −50346.7 −0.192167
\(148\) 253893. 0.952790
\(149\) 388410. 1.43326 0.716630 0.697453i \(-0.245684\pi\)
0.716630 + 0.697453i \(0.245684\pi\)
\(150\) 187075. 0.678873
\(151\) 155035. 0.553333 0.276667 0.960966i \(-0.410770\pi\)
0.276667 + 0.960966i \(0.410770\pi\)
\(152\) −15043.9 −0.0528142
\(153\) 82027.0 0.283288
\(154\) −44249.3 −0.150351
\(155\) 9180.96 0.0306944
\(156\) −171840. −0.565345
\(157\) 9382.95 0.0303802 0.0151901 0.999885i \(-0.495165\pi\)
0.0151901 + 0.999885i \(0.495165\pi\)
\(158\) 93343.6 0.297469
\(159\) −24229.4 −0.0760064
\(160\) 459249. 1.41824
\(161\) −20372.2 −0.0619403
\(162\) 122738. 0.367446
\(163\) −457950. −1.35005 −0.675023 0.737797i \(-0.735866\pi\)
−0.675023 + 0.737797i \(0.735866\pi\)
\(164\) 54602.5 0.158527
\(165\) 289961. 0.829144
\(166\) −71116.5 −0.200309
\(167\) −82704.6 −0.229477 −0.114738 0.993396i \(-0.536603\pi\)
−0.114738 + 0.993396i \(0.536603\pi\)
\(168\) −261334. −0.714370
\(169\) −249827. −0.672856
\(170\) 282107. 0.748671
\(171\) −6915.63 −0.0180860
\(172\) −404757. −1.04321
\(173\) −156470. −0.397479 −0.198740 0.980052i \(-0.563685\pi\)
−0.198740 + 0.980052i \(0.563685\pi\)
\(174\) −156058. −0.390764
\(175\) 859630. 2.12186
\(176\) 128236. 0.312053
\(177\) −211507. −0.507447
\(178\) 20286.4 0.0479905
\(179\) −164148. −0.382915 −0.191457 0.981501i \(-0.561321\pi\)
−0.191457 + 0.981501i \(0.561321\pi\)
\(180\) 138323. 0.318209
\(181\) −708785. −1.60812 −0.804059 0.594549i \(-0.797330\pi\)
−0.804059 + 0.594549i \(0.797330\pi\)
\(182\) 87513.3 0.195837
\(183\) 516835. 1.14084
\(184\) −15750.9 −0.0342973
\(185\) 847293. 1.82014
\(186\) −2920.63 −0.00619004
\(187\) 289408. 0.605210
\(188\) −548759. −1.13237
\(189\) 464343. 0.945550
\(190\) −23784.2 −0.0477974
\(191\) 918508. 1.82179 0.910897 0.412633i \(-0.135391\pi\)
0.910897 + 0.412633i \(0.135391\pi\)
\(192\) 252465. 0.494251
\(193\) 182636. 0.352935 0.176467 0.984306i \(-0.443533\pi\)
0.176467 + 0.984306i \(0.443533\pi\)
\(194\) −185308. −0.353500
\(195\) −573465. −1.07999
\(196\) −84738.3 −0.157558
\(197\) −38809.0 −0.0712470
\(198\) −15727.0 −0.0285091
\(199\) 507573. 0.908586 0.454293 0.890852i \(-0.349892\pi\)
0.454293 + 0.890852i \(0.349892\pi\)
\(200\) 664628. 1.17491
\(201\) −522229. −0.911740
\(202\) −74551.4 −0.128552
\(203\) −717104. −1.22136
\(204\) 809742. 1.36230
\(205\) 182220. 0.302838
\(206\) −208305. −0.342004
\(207\) −7240.64 −0.0117450
\(208\) −253616. −0.406461
\(209\) −24399.8 −0.0386385
\(210\) −413167. −0.646513
\(211\) −237438. −0.367151 −0.183575 0.983006i \(-0.558767\pi\)
−0.183575 + 0.983006i \(0.558767\pi\)
\(212\) −40780.4 −0.0623178
\(213\) −1.15541e6 −1.74497
\(214\) −36444.3 −0.0543996
\(215\) −1.35076e6 −1.99288
\(216\) 359009. 0.523566
\(217\) −13420.6 −0.0193473
\(218\) 78509.5 0.111887
\(219\) 1.30657e6 1.84086
\(220\) 488032. 0.679816
\(221\) −572371. −0.788310
\(222\) −269539. −0.367062
\(223\) −404970. −0.545332 −0.272666 0.962109i \(-0.587905\pi\)
−0.272666 + 0.962109i \(0.587905\pi\)
\(224\) −671322. −0.893945
\(225\) 305528. 0.402341
\(226\) 375892. 0.489544
\(227\) −359358. −0.462874 −0.231437 0.972850i \(-0.574343\pi\)
−0.231437 + 0.972850i \(0.574343\pi\)
\(228\) −68268.8 −0.0869731
\(229\) −491606. −0.619482 −0.309741 0.950821i \(-0.600242\pi\)
−0.309741 + 0.950821i \(0.600242\pi\)
\(230\) −24902.0 −0.0310395
\(231\) −423860. −0.522628
\(232\) −554433. −0.676283
\(233\) 180695. 0.218050 0.109025 0.994039i \(-0.465227\pi\)
0.109025 + 0.994039i \(0.465227\pi\)
\(234\) 31103.8 0.0371342
\(235\) −1.83132e6 −2.16319
\(236\) −355985. −0.416056
\(237\) 894130. 1.03402
\(238\) −412379. −0.471904
\(239\) −1.65255e6 −1.87137 −0.935686 0.352833i \(-0.885218\pi\)
−0.935686 + 0.352833i \(0.885218\pi\)
\(240\) 1.19737e6 1.34184
\(241\) −885940. −0.982566 −0.491283 0.871000i \(-0.663472\pi\)
−0.491283 + 0.871000i \(0.663472\pi\)
\(242\) 232280. 0.254960
\(243\) 372770. 0.404972
\(244\) 869882. 0.935375
\(245\) −282789. −0.300986
\(246\) −57967.3 −0.0610724
\(247\) 48256.2 0.0503281
\(248\) −10376.2 −0.0107129
\(249\) −681218. −0.696287
\(250\) 513968. 0.520099
\(251\) −617027. −0.618187 −0.309094 0.951032i \(-0.600026\pi\)
−0.309094 + 0.951032i \(0.600026\pi\)
\(252\) −202198. −0.200575
\(253\) −25546.5 −0.0250917
\(254\) −446553. −0.434299
\(255\) 2.70227e6 2.60243
\(256\) 151778. 0.144746
\(257\) −1.49616e6 −1.41301 −0.706506 0.707707i \(-0.749730\pi\)
−0.706506 + 0.707707i \(0.749730\pi\)
\(258\) 429700. 0.401898
\(259\) −1.23856e6 −1.14727
\(260\) −965196. −0.885486
\(261\) −254872. −0.231590
\(262\) 515574. 0.464021
\(263\) 1.17809e6 1.05024 0.525121 0.851028i \(-0.324020\pi\)
0.525121 + 0.851028i \(0.324020\pi\)
\(264\) −327710. −0.289387
\(265\) −136092. −0.119047
\(266\) 34767.3 0.0301278
\(267\) 194322. 0.166818
\(268\) −878961. −0.747537
\(269\) −843390. −0.710637 −0.355319 0.934745i \(-0.615628\pi\)
−0.355319 + 0.934745i \(0.615628\pi\)
\(270\) 567590. 0.473833
\(271\) −1.38882e6 −1.14874 −0.574370 0.818596i \(-0.694753\pi\)
−0.574370 + 0.818596i \(0.694753\pi\)
\(272\) 1.19509e6 0.979438
\(273\) 838281. 0.680743
\(274\) 137080. 0.110306
\(275\) 1.07796e6 0.859553
\(276\) −71477.2 −0.0564800
\(277\) 22216.4 0.0173970 0.00869850 0.999962i \(-0.497231\pi\)
0.00869850 + 0.999962i \(0.497231\pi\)
\(278\) 523335. 0.406133
\(279\) −4769.91 −0.00366859
\(280\) −1.46787e6 −1.11890
\(281\) −84719.7 −0.0640057 −0.0320029 0.999488i \(-0.510189\pi\)
−0.0320029 + 0.999488i \(0.510189\pi\)
\(282\) 582575. 0.436244
\(283\) −684685. −0.508188 −0.254094 0.967180i \(-0.581777\pi\)
−0.254094 + 0.967180i \(0.581777\pi\)
\(284\) −1.94467e6 −1.43070
\(285\) −227826. −0.166147
\(286\) 109740. 0.0793326
\(287\) −266365. −0.190886
\(288\) −238600. −0.169508
\(289\) 1.27726e6 0.899569
\(290\) −876552. −0.612044
\(291\) −1.77504e6 −1.22879
\(292\) 2.19908e6 1.50933
\(293\) 1.50151e6 1.02178 0.510891 0.859646i \(-0.329316\pi\)
0.510891 + 0.859646i \(0.329316\pi\)
\(294\) 89960.1 0.0606990
\(295\) −1.18799e6 −0.794802
\(296\) −957598. −0.635263
\(297\) 582280. 0.383037
\(298\) −694016. −0.452719
\(299\) 50524.1 0.0326829
\(300\) 3.01607e6 1.93481
\(301\) 1.97451e6 1.25616
\(302\) −277018. −0.174779
\(303\) −714121. −0.446853
\(304\) −100757. −0.0625303
\(305\) 2.90297e6 1.78687
\(306\) −146567. −0.0894812
\(307\) −2.15201e6 −1.30316 −0.651582 0.758578i \(-0.725894\pi\)
−0.651582 + 0.758578i \(0.725894\pi\)
\(308\) −713396. −0.428503
\(309\) −1.99533e6 −1.18883
\(310\) −16404.6 −0.00969532
\(311\) 3.29274e6 1.93044 0.965219 0.261441i \(-0.0841978\pi\)
0.965219 + 0.261441i \(0.0841978\pi\)
\(312\) 648121. 0.376938
\(313\) −1.95422e6 −1.12749 −0.563744 0.825949i \(-0.690640\pi\)
−0.563744 + 0.825949i \(0.690640\pi\)
\(314\) −16765.5 −0.00959608
\(315\) −674776. −0.383162
\(316\) 1.50490e6 0.847796
\(317\) −1.05820e6 −0.591454 −0.295727 0.955272i \(-0.595562\pi\)
−0.295727 + 0.955272i \(0.595562\pi\)
\(318\) 43293.4 0.0240079
\(319\) −899239. −0.494764
\(320\) 1.41805e6 0.774134
\(321\) −349097. −0.189096
\(322\) 36401.3 0.0195649
\(323\) −227392. −0.121274
\(324\) 1.97881e6 1.04723
\(325\) −2.13192e6 −1.11960
\(326\) 818269. 0.426434
\(327\) 752035. 0.388927
\(328\) −205942. −0.105696
\(329\) 2.67699e6 1.36351
\(330\) −518105. −0.261899
\(331\) 292872. 0.146929 0.0734646 0.997298i \(-0.476594\pi\)
0.0734646 + 0.997298i \(0.476594\pi\)
\(332\) −1.14655e6 −0.570886
\(333\) −440206. −0.217543
\(334\) 147777. 0.0724840
\(335\) −2.93327e6 −1.42804
\(336\) −1.75030e6 −0.845791
\(337\) 2.74512e6 1.31670 0.658349 0.752713i \(-0.271255\pi\)
0.658349 + 0.752713i \(0.271255\pi\)
\(338\) 446393. 0.212533
\(339\) 3.60063e6 1.70169
\(340\) 4.54818e6 2.13373
\(341\) −16829.2 −0.00783750
\(342\) 12356.9 0.00571275
\(343\) −1.94850e6 −0.894265
\(344\) 1.52660e6 0.695553
\(345\) −238534. −0.107895
\(346\) 279582. 0.125550
\(347\) 1.06559e6 0.475078 0.237539 0.971378i \(-0.423659\pi\)
0.237539 + 0.971378i \(0.423659\pi\)
\(348\) −2.51600e6 −1.11369
\(349\) −3.86363e6 −1.69798 −0.848988 0.528412i \(-0.822788\pi\)
−0.848988 + 0.528412i \(0.822788\pi\)
\(350\) −1.53600e6 −0.670224
\(351\) −1.15159e6 −0.498921
\(352\) −841829. −0.362132
\(353\) 2.21033e6 0.944105 0.472053 0.881570i \(-0.343513\pi\)
0.472053 + 0.881570i \(0.343513\pi\)
\(354\) 377922. 0.160285
\(355\) −6.48974e6 −2.73311
\(356\) 327062. 0.136774
\(357\) −3.95013e6 −1.64037
\(358\) 293301. 0.120950
\(359\) 3.82505e6 1.56639 0.783197 0.621773i \(-0.213588\pi\)
0.783197 + 0.621773i \(0.213588\pi\)
\(360\) −521706. −0.212163
\(361\) −2.45693e6 −0.992257
\(362\) 1.26646e6 0.507951
\(363\) 2.22498e6 0.886258
\(364\) 1.41091e6 0.558142
\(365\) 7.33875e6 2.88330
\(366\) −923486. −0.360353
\(367\) 165142. 0.0640017 0.0320008 0.999488i \(-0.489812\pi\)
0.0320008 + 0.999488i \(0.489812\pi\)
\(368\) −105492. −0.0406069
\(369\) −94671.0 −0.0361952
\(370\) −1.51395e6 −0.574921
\(371\) 198937. 0.0750381
\(372\) −47086.9 −0.0176418
\(373\) 4.17984e6 1.55556 0.777781 0.628536i \(-0.216345\pi\)
0.777781 + 0.628536i \(0.216345\pi\)
\(374\) −517117. −0.191166
\(375\) 4.92325e6 1.80790
\(376\) 2.06973e6 0.754995
\(377\) 1.77845e6 0.644449
\(378\) −829694. −0.298668
\(379\) −2.63851e6 −0.943542 −0.471771 0.881721i \(-0.656385\pi\)
−0.471771 + 0.881721i \(0.656385\pi\)
\(380\) −383453. −0.136224
\(381\) −4.27749e6 −1.50965
\(382\) −1.64120e6 −0.575444
\(383\) −4.25043e6 −1.48059 −0.740297 0.672280i \(-0.765315\pi\)
−0.740297 + 0.672280i \(0.765315\pi\)
\(384\) −3.06753e6 −1.06160
\(385\) −2.38075e6 −0.818580
\(386\) −326337. −0.111480
\(387\) 701777. 0.238189
\(388\) −2.98756e6 −1.00748
\(389\) 1.99233e6 0.667556 0.333778 0.942652i \(-0.391676\pi\)
0.333778 + 0.942652i \(0.391676\pi\)
\(390\) 1.02467e6 0.341133
\(391\) −238079. −0.0787550
\(392\) 319603. 0.105050
\(393\) 4.93863e6 1.61297
\(394\) 69344.3 0.0225046
\(395\) 5.02217e6 1.61956
\(396\) −253554. −0.0812516
\(397\) −318582. −0.101448 −0.0507242 0.998713i \(-0.516153\pi\)
−0.0507242 + 0.998713i \(0.516153\pi\)
\(398\) −906937. −0.286992
\(399\) 333033. 0.104726
\(400\) 4.45137e6 1.39105
\(401\) 787093. 0.244436 0.122218 0.992503i \(-0.460999\pi\)
0.122218 + 0.992503i \(0.460999\pi\)
\(402\) 933125. 0.287988
\(403\) 33283.6 0.0102087
\(404\) −1.20193e6 −0.366376
\(405\) 6.60370e6 2.00055
\(406\) 1.28133e6 0.385785
\(407\) −1.55314e6 −0.464754
\(408\) −3.05407e6 −0.908297
\(409\) 5.53933e6 1.63738 0.818689 0.574237i \(-0.194701\pi\)
0.818689 + 0.574237i \(0.194701\pi\)
\(410\) −325592. −0.0956564
\(411\) 1.31308e6 0.383429
\(412\) −3.35833e6 −0.974721
\(413\) 1.73659e6 0.500982
\(414\) 12937.7 0.00370984
\(415\) −3.82628e6 −1.09058
\(416\) 1.66491e6 0.471691
\(417\) 5.01298e6 1.41174
\(418\) 43597.7 0.0122046
\(419\) −2.62212e6 −0.729654 −0.364827 0.931075i \(-0.618872\pi\)
−0.364827 + 0.931075i \(0.618872\pi\)
\(420\) −6.66115e6 −1.84258
\(421\) 4.19009e6 1.15218 0.576088 0.817388i \(-0.304579\pi\)
0.576088 + 0.817388i \(0.304579\pi\)
\(422\) 424257. 0.115971
\(423\) 951450. 0.258544
\(424\) 153810. 0.0415498
\(425\) 1.00460e7 2.69787
\(426\) 2.06450e6 0.551178
\(427\) −4.24351e6 −1.12630
\(428\) −587562. −0.155040
\(429\) 1.05119e6 0.275765
\(430\) 2.41355e6 0.629483
\(431\) −5.97331e6 −1.54889 −0.774447 0.632639i \(-0.781972\pi\)
−0.774447 + 0.632639i \(0.781972\pi\)
\(432\) 2.40448e6 0.619885
\(433\) −5.57568e6 −1.42915 −0.714575 0.699559i \(-0.753380\pi\)
−0.714575 + 0.699559i \(0.753380\pi\)
\(434\) 23980.0 0.00611118
\(435\) −8.39641e6 −2.12750
\(436\) 1.26575e6 0.318882
\(437\) 20072.2 0.00502796
\(438\) −2.33459e6 −0.581467
\(439\) 3.38123e6 0.837362 0.418681 0.908133i \(-0.362493\pi\)
0.418681 + 0.908133i \(0.362493\pi\)
\(440\) −1.84069e6 −0.453261
\(441\) 146921. 0.0359739
\(442\) 1.02272e6 0.249001
\(443\) −5.92927e6 −1.43546 −0.717732 0.696320i \(-0.754820\pi\)
−0.717732 + 0.696320i \(0.754820\pi\)
\(444\) −4.34556e6 −1.04614
\(445\) 1.09147e6 0.261283
\(446\) 723605. 0.172252
\(447\) −6.64791e6 −1.57368
\(448\) −2.07288e6 −0.487954
\(449\) 4.08430e6 0.956096 0.478048 0.878334i \(-0.341345\pi\)
0.478048 + 0.878334i \(0.341345\pi\)
\(450\) −545920. −0.127086
\(451\) −334019. −0.0773267
\(452\) 6.06021e6 1.39522
\(453\) −2.65353e6 −0.607544
\(454\) 642105. 0.146206
\(455\) 4.70848e6 1.06623
\(456\) 257486. 0.0579884
\(457\) −1.62270e6 −0.363452 −0.181726 0.983349i \(-0.558168\pi\)
−0.181726 + 0.983349i \(0.558168\pi\)
\(458\) 878407. 0.195673
\(459\) 5.42652e6 1.20224
\(460\) −401474. −0.0884633
\(461\) 1.68060e6 0.368308 0.184154 0.982897i \(-0.441045\pi\)
0.184154 + 0.982897i \(0.441045\pi\)
\(462\) 757358. 0.165081
\(463\) −5.92990e6 −1.28557 −0.642784 0.766048i \(-0.722221\pi\)
−0.642784 + 0.766048i \(0.722221\pi\)
\(464\) −3.71333e6 −0.800698
\(465\) −157138. −0.0337015
\(466\) −322867. −0.0688745
\(467\) 8.68490e6 1.84278 0.921388 0.388644i \(-0.127057\pi\)
0.921388 + 0.388644i \(0.127057\pi\)
\(468\) 501461. 0.105833
\(469\) 4.28780e6 0.900124
\(470\) 3.27222e6 0.683279
\(471\) −160596. −0.0333566
\(472\) 1.34265e6 0.277401
\(473\) 2.47601e6 0.508862
\(474\) −1.59764e6 −0.326613
\(475\) −846972. −0.172240
\(476\) −6.64845e6 −1.34494
\(477\) 70705.9 0.0142285
\(478\) 2.95280e6 0.591104
\(479\) −501591. −0.0998875 −0.0499438 0.998752i \(-0.515904\pi\)
−0.0499438 + 0.998752i \(0.515904\pi\)
\(480\) −7.86036e6 −1.55718
\(481\) 3.07168e6 0.605360
\(482\) 1.58301e6 0.310360
\(483\) 348684. 0.0680087
\(484\) 3.74486e6 0.726644
\(485\) −9.97010e6 −1.92462
\(486\) −666069. −0.127917
\(487\) 5.53404e6 1.05735 0.528676 0.848823i \(-0.322688\pi\)
0.528676 + 0.848823i \(0.322688\pi\)
\(488\) −3.28089e6 −0.623652
\(489\) 7.83812e6 1.48231
\(490\) 505290. 0.0950715
\(491\) 7.97234e6 1.49239 0.746194 0.665728i \(-0.231879\pi\)
0.746194 + 0.665728i \(0.231879\pi\)
\(492\) −934560. −0.174058
\(493\) −8.38039e6 −1.55291
\(494\) −86224.6 −0.0158970
\(495\) −846159. −0.155217
\(496\) −69494.8 −0.0126838
\(497\) 9.48660e6 1.72274
\(498\) 1.21721e6 0.219934
\(499\) 1.23157e6 0.221416 0.110708 0.993853i \(-0.464688\pi\)
0.110708 + 0.993853i \(0.464688\pi\)
\(500\) 8.28630e6 1.48230
\(501\) 1.41555e6 0.251959
\(502\) 1.10251e6 0.195265
\(503\) −3.37222e6 −0.594286 −0.297143 0.954833i \(-0.596034\pi\)
−0.297143 + 0.954833i \(0.596034\pi\)
\(504\) 762621. 0.133731
\(505\) −4.01109e6 −0.699896
\(506\) 45646.7 0.00792562
\(507\) 4.27596e6 0.738777
\(508\) −7.19942e6 −1.23776
\(509\) 2.06141e6 0.352671 0.176336 0.984330i \(-0.443576\pi\)
0.176336 + 0.984330i \(0.443576\pi\)
\(510\) −4.82845e6 −0.822019
\(511\) −1.07277e7 −1.81741
\(512\) −6.00634e6 −1.01259
\(513\) −457506. −0.0767544
\(514\) 2.67336e6 0.446323
\(515\) −1.12074e7 −1.86203
\(516\) 6.92770e6 1.14542
\(517\) 3.35691e6 0.552349
\(518\) 2.21307e6 0.362385
\(519\) 2.67808e6 0.436421
\(520\) 3.64038e6 0.590389
\(521\) −4.49375e6 −0.725295 −0.362647 0.931926i \(-0.618127\pi\)
−0.362647 + 0.931926i \(0.618127\pi\)
\(522\) 455407. 0.0731516
\(523\) −1.00504e7 −1.60668 −0.803342 0.595518i \(-0.796947\pi\)
−0.803342 + 0.595518i \(0.796947\pi\)
\(524\) 8.31218e6 1.32247
\(525\) −1.47132e7 −2.32974
\(526\) −2.10502e6 −0.331736
\(527\) −156839. −0.0245995
\(528\) −2.19485e6 −0.342625
\(529\) −6.41533e6 −0.996735
\(530\) 243171. 0.0376030
\(531\) 617215. 0.0949948
\(532\) 560525. 0.0858650
\(533\) 660599. 0.100721
\(534\) −347216. −0.0526922
\(535\) −1.96081e6 −0.296177
\(536\) 3.31513e6 0.498413
\(537\) 2.80950e6 0.420430
\(538\) 1.50698e6 0.224466
\(539\) 518367. 0.0768539
\(540\) 9.15080e6 1.35044
\(541\) 1.43714e6 0.211109 0.105555 0.994414i \(-0.466338\pi\)
0.105555 + 0.994414i \(0.466338\pi\)
\(542\) 2.48155e6 0.362848
\(543\) 1.21313e7 1.76567
\(544\) −7.84537e6 −1.13662
\(545\) 4.22404e6 0.609168
\(546\) −1.49785e6 −0.215024
\(547\) −6.80536e6 −0.972485 −0.486243 0.873824i \(-0.661633\pi\)
−0.486243 + 0.873824i \(0.661633\pi\)
\(548\) 2.21003e6 0.314374
\(549\) −1.50822e6 −0.213567
\(550\) −1.92612e6 −0.271504
\(551\) 706544. 0.0991426
\(552\) 269587. 0.0376575
\(553\) −7.34132e6 −1.02085
\(554\) −39696.5 −0.00549513
\(555\) −1.45020e7 −1.99846
\(556\) 8.43731e6 1.15749
\(557\) 3.61967e6 0.494346 0.247173 0.968971i \(-0.420498\pi\)
0.247173 + 0.968971i \(0.420498\pi\)
\(558\) 8522.92 0.00115879
\(559\) −4.89688e6 −0.662812
\(560\) −9.83109e6 −1.32474
\(561\) −4.95342e6 −0.664504
\(562\) 151378. 0.0202173
\(563\) 4.30849e6 0.572867 0.286433 0.958100i \(-0.407530\pi\)
0.286433 + 0.958100i \(0.407530\pi\)
\(564\) 9.39239e6 1.24331
\(565\) 2.02241e7 2.66531
\(566\) 1.22340e6 0.160520
\(567\) −9.65317e6 −1.26099
\(568\) 7.33461e6 0.953907
\(569\) −8.38186e6 −1.08532 −0.542662 0.839951i \(-0.682584\pi\)
−0.542662 + 0.839951i \(0.682584\pi\)
\(570\) 407083. 0.0524802
\(571\) 9.08840e6 1.16653 0.583267 0.812281i \(-0.301774\pi\)
0.583267 + 0.812281i \(0.301774\pi\)
\(572\) 1.76926e6 0.226100
\(573\) −1.57209e7 −2.00028
\(574\) 475945. 0.0602944
\(575\) −886777. −0.111852
\(576\) −736738. −0.0925245
\(577\) −5.90935e6 −0.738924 −0.369462 0.929246i \(-0.620458\pi\)
−0.369462 + 0.929246i \(0.620458\pi\)
\(578\) −2.28222e6 −0.284144
\(579\) −3.12595e6 −0.387512
\(580\) −1.41319e7 −1.74434
\(581\) 5.59319e6 0.687416
\(582\) 3.17167e6 0.388133
\(583\) 249465. 0.0303975
\(584\) −8.29415e6 −1.00633
\(585\) 1.67348e6 0.202176
\(586\) −2.68291e6 −0.322747
\(587\) −1.25855e7 −1.50757 −0.753783 0.657123i \(-0.771773\pi\)
−0.753783 + 0.657123i \(0.771773\pi\)
\(588\) 1.45035e6 0.172994
\(589\) 13222.9 0.00157051
\(590\) 2.12272e6 0.251051
\(591\) 664243. 0.0782272
\(592\) −6.41355e6 −0.752132
\(593\) −3.45677e6 −0.403677 −0.201838 0.979419i \(-0.564692\pi\)
−0.201838 + 0.979419i \(0.564692\pi\)
\(594\) −1.04042e6 −0.120989
\(595\) −2.21872e7 −2.56927
\(596\) −1.11891e7 −1.29026
\(597\) −8.68747e6 −0.997602
\(598\) −90276.9 −0.0103234
\(599\) 8.73104e6 0.994257 0.497129 0.867677i \(-0.334388\pi\)
0.497129 + 0.867677i \(0.334388\pi\)
\(600\) −1.13756e7 −1.29001
\(601\) −1.68595e7 −1.90396 −0.951981 0.306156i \(-0.900957\pi\)
−0.951981 + 0.306156i \(0.900957\pi\)
\(602\) −3.52808e6 −0.396777
\(603\) 1.52396e6 0.170679
\(604\) −4.46613e6 −0.498126
\(605\) 1.24973e7 1.38813
\(606\) 1.27600e6 0.141146
\(607\) −3.10155e6 −0.341670 −0.170835 0.985300i \(-0.554647\pi\)
−0.170835 + 0.985300i \(0.554647\pi\)
\(608\) 661437. 0.0725654
\(609\) 1.22737e7 1.34101
\(610\) −5.18706e6 −0.564412
\(611\) −6.63907e6 −0.719456
\(612\) −2.36298e6 −0.255024
\(613\) 1.54366e7 1.65921 0.829605 0.558351i \(-0.188566\pi\)
0.829605 + 0.558351i \(0.188566\pi\)
\(614\) 3.84524e6 0.411626
\(615\) −3.11881e6 −0.332508
\(616\) 2.69068e6 0.285700
\(617\) −1.46018e7 −1.54417 −0.772083 0.635522i \(-0.780785\pi\)
−0.772083 + 0.635522i \(0.780785\pi\)
\(618\) 3.56528e6 0.375511
\(619\) 1.01174e7 1.06131 0.530655 0.847588i \(-0.321946\pi\)
0.530655 + 0.847588i \(0.321946\pi\)
\(620\) −264479. −0.0276319
\(621\) −479007. −0.0498440
\(622\) −5.88350e6 −0.609761
\(623\) −1.59549e6 −0.164693
\(624\) 4.34082e6 0.446283
\(625\) 8.53715e6 0.874204
\(626\) 3.49182e6 0.356136
\(627\) 417619. 0.0424239
\(628\) −270297. −0.0273491
\(629\) −1.44743e7 −1.45872
\(630\) 1.20570e6 0.121028
\(631\) 1.83340e7 1.83309 0.916544 0.399933i \(-0.130967\pi\)
0.916544 + 0.399933i \(0.130967\pi\)
\(632\) −5.67598e6 −0.565259
\(633\) 4.06392e6 0.403121
\(634\) 1.89081e6 0.186821
\(635\) −2.40259e7 −2.36453
\(636\) 697985. 0.0684232
\(637\) −1.02519e6 −0.100105
\(638\) 1.60677e6 0.156279
\(639\) 3.37171e6 0.326661
\(640\) −1.72298e7 −1.66276
\(641\) 1.79215e7 1.72278 0.861391 0.507942i \(-0.169594\pi\)
0.861391 + 0.507942i \(0.169594\pi\)
\(642\) 623770. 0.0597292
\(643\) 1.36938e7 1.30616 0.653082 0.757287i \(-0.273475\pi\)
0.653082 + 0.757287i \(0.273475\pi\)
\(644\) 586868. 0.0557604
\(645\) 2.31191e7 2.18812
\(646\) 406306. 0.0383065
\(647\) 9.84305e6 0.924419 0.462210 0.886771i \(-0.347057\pi\)
0.462210 + 0.886771i \(0.347057\pi\)
\(648\) −7.46340e6 −0.698231
\(649\) 2.17766e6 0.202945
\(650\) 3.80935e6 0.353645
\(651\) 229702. 0.0212428
\(652\) 1.31923e7 1.21535
\(653\) −1.17007e7 −1.07381 −0.536906 0.843642i \(-0.680407\pi\)
−0.536906 + 0.843642i \(0.680407\pi\)
\(654\) −1.34374e6 −0.122849
\(655\) 2.77394e7 2.52635
\(656\) −1.37930e6 −0.125141
\(657\) −3.81280e6 −0.344612
\(658\) −4.78328e6 −0.430686
\(659\) −7.01446e6 −0.629189 −0.314594 0.949226i \(-0.601868\pi\)
−0.314594 + 0.949226i \(0.601868\pi\)
\(660\) −8.35300e6 −0.746419
\(661\) −894132. −0.0795972 −0.0397986 0.999208i \(-0.512672\pi\)
−0.0397986 + 0.999208i \(0.512672\pi\)
\(662\) −523307. −0.0464100
\(663\) 9.79652e6 0.865542
\(664\) 4.32440e6 0.380633
\(665\) 1.87059e6 0.164030
\(666\) 786564. 0.0687145
\(667\) 739750. 0.0643829
\(668\) 2.38250e6 0.206581
\(669\) 6.93134e6 0.598759
\(670\) 5.24119e6 0.451069
\(671\) −5.32130e6 −0.456259
\(672\) 1.14901e7 0.981527
\(673\) −6.63660e6 −0.564817 −0.282409 0.959294i \(-0.591133\pi\)
−0.282409 + 0.959294i \(0.591133\pi\)
\(674\) −4.90501e6 −0.415901
\(675\) 2.02123e7 1.70748
\(676\) 7.19684e6 0.605724
\(677\) −1.90982e7 −1.60148 −0.800739 0.599013i \(-0.795560\pi\)
−0.800739 + 0.599013i \(0.795560\pi\)
\(678\) −6.43365e6 −0.537506
\(679\) 1.45741e7 1.21313
\(680\) −1.71541e7 −1.42265
\(681\) 6.15066e6 0.508223
\(682\) 30070.6 0.00247560
\(683\) 1.10399e7 0.905551 0.452776 0.891625i \(-0.350434\pi\)
0.452776 + 0.891625i \(0.350434\pi\)
\(684\) 199221. 0.0162815
\(685\) 7.37531e6 0.600556
\(686\) 3.48161e6 0.282468
\(687\) 8.41417e6 0.680173
\(688\) 1.02245e7 0.823513
\(689\) −493375. −0.0395939
\(690\) 426214. 0.0340804
\(691\) −1.10019e7 −0.876540 −0.438270 0.898843i \(-0.644409\pi\)
−0.438270 + 0.898843i \(0.644409\pi\)
\(692\) 4.50747e6 0.357822
\(693\) 1.23690e6 0.0978367
\(694\) −1.90400e6 −0.150061
\(695\) 2.81570e7 2.21118
\(696\) 9.48949e6 0.742540
\(697\) −3.11286e6 −0.242705
\(698\) 6.90357e6 0.536334
\(699\) −3.09271e6 −0.239412
\(700\) −2.47636e7 −1.91016
\(701\) 2.09298e7 1.60868 0.804341 0.594169i \(-0.202519\pi\)
0.804341 + 0.594169i \(0.202519\pi\)
\(702\) 2.05768e6 0.157592
\(703\) 1.22032e6 0.0931291
\(704\) −2.59936e6 −0.197667
\(705\) 3.13443e7 2.37512
\(706\) −3.94944e6 −0.298211
\(707\) 5.86334e6 0.441160
\(708\) 6.09293e6 0.456818
\(709\) 8.93459e6 0.667512 0.333756 0.942659i \(-0.391684\pi\)
0.333756 + 0.942659i \(0.391684\pi\)
\(710\) 1.15959e7 0.863297
\(711\) −2.60923e6 −0.193570
\(712\) −1.23356e6 −0.0911929
\(713\) 13844.4 0.00101988
\(714\) 7.05814e6 0.518137
\(715\) 5.90436e6 0.431925
\(716\) 4.72865e6 0.344711
\(717\) 2.82846e7 2.05471
\(718\) −6.83464e6 −0.494771
\(719\) 2.40596e7 1.73566 0.867831 0.496859i \(-0.165513\pi\)
0.867831 + 0.496859i \(0.165513\pi\)
\(720\) −3.49415e6 −0.251194
\(721\) 1.63828e7 1.17368
\(722\) 4.39006e6 0.313421
\(723\) 1.51635e7 1.07883
\(724\) 2.04182e7 1.44767
\(725\) −3.12146e7 −2.20553
\(726\) −3.97562e6 −0.279939
\(727\) −2.08801e7 −1.46520 −0.732601 0.680658i \(-0.761694\pi\)
−0.732601 + 0.680658i \(0.761694\pi\)
\(728\) −5.32145e6 −0.372136
\(729\) 1.03118e7 0.718647
\(730\) −1.31130e7 −0.910739
\(731\) 2.30750e7 1.59716
\(732\) −1.48886e7 −1.02702
\(733\) −2.01592e7 −1.38584 −0.692919 0.721016i \(-0.743676\pi\)
−0.692919 + 0.721016i \(0.743676\pi\)
\(734\) −295077. −0.0202160
\(735\) 4.84012e6 0.330474
\(736\) 692522. 0.0471237
\(737\) 5.37684e6 0.364635
\(738\) 169159. 0.0114329
\(739\) −7.43158e6 −0.500576 −0.250288 0.968171i \(-0.580525\pi\)
−0.250288 + 0.968171i \(0.580525\pi\)
\(740\) −2.44082e7 −1.63854
\(741\) −825937. −0.0552588
\(742\) −355464. −0.0237020
\(743\) −1.43501e7 −0.953634 −0.476817 0.879003i \(-0.658210\pi\)
−0.476817 + 0.879003i \(0.658210\pi\)
\(744\) 177595. 0.0117625
\(745\) −3.73401e7 −2.46482
\(746\) −7.46858e6 −0.491350
\(747\) 1.98792e6 0.130346
\(748\) −8.33706e6 −0.544828
\(749\) 2.86628e6 0.186687
\(750\) −8.79692e6 −0.571054
\(751\) 1.16954e7 0.756684 0.378342 0.925666i \(-0.376494\pi\)
0.378342 + 0.925666i \(0.376494\pi\)
\(752\) 1.38621e7 0.893890
\(753\) 1.05608e7 0.678752
\(754\) −3.17776e6 −0.203560
\(755\) −1.49044e7 −0.951583
\(756\) −1.33765e7 −0.851211
\(757\) −3.13800e7 −1.99028 −0.995139 0.0984786i \(-0.968602\pi\)
−0.995139 + 0.0984786i \(0.968602\pi\)
\(758\) 4.71453e6 0.298033
\(759\) 437245. 0.0275499
\(760\) 1.44625e6 0.0908260
\(761\) −1.55647e7 −0.974268 −0.487134 0.873327i \(-0.661958\pi\)
−0.487134 + 0.873327i \(0.661958\pi\)
\(762\) 7.64307e6 0.476848
\(763\) −6.17464e6 −0.383972
\(764\) −2.64597e7 −1.64003
\(765\) −7.88572e6 −0.487178
\(766\) 7.59472e6 0.467670
\(767\) −4.30683e6 −0.264344
\(768\) −2.59778e6 −0.158927
\(769\) −2.03316e7 −1.23981 −0.619906 0.784676i \(-0.712829\pi\)
−0.619906 + 0.784676i \(0.712829\pi\)
\(770\) 4.25394e6 0.258562
\(771\) 2.56078e7 1.55145
\(772\) −5.26127e6 −0.317722
\(773\) 4.36982e6 0.263035 0.131518 0.991314i \(-0.458015\pi\)
0.131518 + 0.991314i \(0.458015\pi\)
\(774\) −1.25394e6 −0.0752359
\(775\) −584181. −0.0349376
\(776\) 1.12681e7 0.671730
\(777\) 2.11988e7 1.25967
\(778\) −3.55992e6 −0.210859
\(779\) 262443. 0.0154950
\(780\) 1.65200e7 0.972239
\(781\) 1.18961e7 0.697872
\(782\) 425401. 0.0248761
\(783\) −1.68611e7 −0.982837
\(784\) 2.14055e6 0.124376
\(785\) −902036. −0.0522456
\(786\) −8.82440e6 −0.509482
\(787\) −410710. −0.0236373 −0.0118187 0.999930i \(-0.503762\pi\)
−0.0118187 + 0.999930i \(0.503762\pi\)
\(788\) 1.11798e6 0.0641386
\(789\) −2.01638e7 −1.15314
\(790\) −8.97366e6 −0.511566
\(791\) −2.95633e7 −1.68001
\(792\) 956317. 0.0541737
\(793\) 1.05241e7 0.594295
\(794\) 569246. 0.0320442
\(795\) 2.32931e6 0.130710
\(796\) −1.46218e7 −0.817935
\(797\) −5.53609e6 −0.308715 −0.154357 0.988015i \(-0.549331\pi\)
−0.154357 + 0.988015i \(0.549331\pi\)
\(798\) −595066. −0.0330794
\(799\) 3.12845e7 1.73365
\(800\) −2.92218e7 −1.61429
\(801\) −567066. −0.0312286
\(802\) −1.40639e6 −0.0772091
\(803\) −1.34523e7 −0.736223
\(804\) 1.50440e7 0.820774
\(805\) 1.95850e6 0.106520
\(806\) −59471.6 −0.00322457
\(807\) 1.44352e7 0.780260
\(808\) 4.53327e6 0.244277
\(809\) −1.66332e6 −0.0893522 −0.0446761 0.999002i \(-0.514226\pi\)
−0.0446761 + 0.999002i \(0.514226\pi\)
\(810\) −1.17996e7 −0.631907
\(811\) −8.09719e6 −0.432297 −0.216149 0.976360i \(-0.569350\pi\)
−0.216149 + 0.976360i \(0.569350\pi\)
\(812\) 2.06578e7 1.09950
\(813\) 2.37705e7 1.26128
\(814\) 2.77516e6 0.146800
\(815\) 4.40253e7 2.32171
\(816\) −2.04547e7 −1.07540
\(817\) −1.94544e6 −0.101968
\(818\) −9.89774e6 −0.517193
\(819\) −2.44626e6 −0.127436
\(820\) −5.24926e6 −0.272623
\(821\) −1.10714e7 −0.573251 −0.286625 0.958043i \(-0.592533\pi\)
−0.286625 + 0.958043i \(0.592533\pi\)
\(822\) −2.34622e6 −0.121112
\(823\) −1.41131e7 −0.726309 −0.363155 0.931729i \(-0.618300\pi\)
−0.363155 + 0.931729i \(0.618300\pi\)
\(824\) 1.26664e7 0.649885
\(825\) −1.84501e7 −0.943765
\(826\) −3.10296e6 −0.158243
\(827\) −1.83779e7 −0.934401 −0.467200 0.884151i \(-0.654737\pi\)
−0.467200 + 0.884151i \(0.654737\pi\)
\(828\) 208583. 0.0105731
\(829\) −3.12197e7 −1.57777 −0.788883 0.614543i \(-0.789340\pi\)
−0.788883 + 0.614543i \(0.789340\pi\)
\(830\) 6.83684e6 0.344477
\(831\) −380249. −0.0191014
\(832\) 5.14084e6 0.257469
\(833\) 4.83089e6 0.241221
\(834\) −8.95724e6 −0.445922
\(835\) 7.95087e6 0.394638
\(836\) 702891. 0.0347834
\(837\) −315555. −0.0155690
\(838\) 4.68522e6 0.230473
\(839\) 1.44949e7 0.710901 0.355450 0.934695i \(-0.384328\pi\)
0.355450 + 0.934695i \(0.384328\pi\)
\(840\) 2.51236e7 1.22852
\(841\) 5.52813e6 0.269518
\(842\) −7.48691e6 −0.363934
\(843\) 1.45004e6 0.0702765
\(844\) 6.83996e6 0.330520
\(845\) 2.40173e7 1.15713
\(846\) −1.70006e6 −0.0816655
\(847\) −1.82684e7 −0.874967
\(848\) 1.03014e6 0.0491936
\(849\) 1.17188e7 0.557976
\(850\) −1.79503e7 −0.852168
\(851\) 1.27767e6 0.0604777
\(852\) 3.32843e7 1.57087
\(853\) 2.52668e7 1.18899 0.594494 0.804100i \(-0.297352\pi\)
0.594494 + 0.804100i \(0.297352\pi\)
\(854\) 7.58235e6 0.355762
\(855\) 664839. 0.0311029
\(856\) 2.21608e6 0.103372
\(857\) 2.26423e7 1.05310 0.526550 0.850144i \(-0.323485\pi\)
0.526550 + 0.850144i \(0.323485\pi\)
\(858\) −1.87828e6 −0.0871050
\(859\) 8.22381e6 0.380269 0.190134 0.981758i \(-0.439108\pi\)
0.190134 + 0.981758i \(0.439108\pi\)
\(860\) 3.89116e7 1.79405
\(861\) 4.55903e6 0.209587
\(862\) 1.06732e7 0.489244
\(863\) −195571. −0.00893876 −0.00446938 0.999990i \(-0.501423\pi\)
−0.00446938 + 0.999990i \(0.501423\pi\)
\(864\) −1.57846e7 −0.719367
\(865\) 1.50423e7 0.683557
\(866\) 9.96268e6 0.451421
\(867\) −2.18612e7 −0.987702
\(868\) 386610. 0.0174170
\(869\) −9.20591e6 −0.413540
\(870\) 1.50028e7 0.672007
\(871\) −1.06339e7 −0.474951
\(872\) −4.77395e6 −0.212611
\(873\) 5.17990e6 0.230031
\(874\) −35865.3 −0.00158816
\(875\) −4.04227e7 −1.78486
\(876\) −3.76387e7 −1.65720
\(877\) −1.52626e7 −0.670084 −0.335042 0.942203i \(-0.608750\pi\)
−0.335042 + 0.942203i \(0.608750\pi\)
\(878\) −6.04162e6 −0.264495
\(879\) −2.56993e7 −1.12189
\(880\) −1.23281e7 −0.536646
\(881\) −8.85117e6 −0.384203 −0.192102 0.981375i \(-0.561530\pi\)
−0.192102 + 0.981375i \(0.561530\pi\)
\(882\) −262520. −0.0113629
\(883\) 2.59722e6 0.112100 0.0560502 0.998428i \(-0.482149\pi\)
0.0560502 + 0.998428i \(0.482149\pi\)
\(884\) 1.64885e7 0.709659
\(885\) 2.03333e7 0.872671
\(886\) 1.05945e7 0.453415
\(887\) 4.75701e6 0.203014 0.101507 0.994835i \(-0.467634\pi\)
0.101507 + 0.994835i \(0.467634\pi\)
\(888\) 1.63899e7 0.697501
\(889\) 3.51206e7 1.49042
\(890\) −1.95025e6 −0.0825306
\(891\) −1.21049e7 −0.510821
\(892\) 1.16661e7 0.490923
\(893\) −2.63757e6 −0.110682
\(894\) 1.18786e7 0.497073
\(895\) 1.57805e7 0.658509
\(896\) 2.51862e7 1.04807
\(897\) −864754. −0.0358849
\(898\) −7.29786e6 −0.301999
\(899\) 487324. 0.0201103
\(900\) −8.80144e6 −0.362199
\(901\) 2.32487e6 0.0954084
\(902\) 596828. 0.0244249
\(903\) −3.37951e7 −1.37922
\(904\) −2.28570e7 −0.930246
\(905\) 6.81395e7 2.76553
\(906\) 4.74135e6 0.191903
\(907\) −4.19917e7 −1.69491 −0.847453 0.530870i \(-0.821865\pi\)
−0.847453 + 0.530870i \(0.821865\pi\)
\(908\) 1.03521e7 0.416693
\(909\) 2.08393e6 0.0836516
\(910\) −8.41315e6 −0.336787
\(911\) −1.86284e7 −0.743668 −0.371834 0.928299i \(-0.621271\pi\)
−0.371834 + 0.928299i \(0.621271\pi\)
\(912\) 1.72452e6 0.0686565
\(913\) 7.01379e6 0.278468
\(914\) 2.89945e6 0.114802
\(915\) −4.96863e7 −1.96193
\(916\) 1.41618e7 0.557675
\(917\) −4.05490e7 −1.59242
\(918\) −9.69616e6 −0.379746
\(919\) −6.84631e6 −0.267404 −0.133702 0.991022i \(-0.542686\pi\)
−0.133702 + 0.991022i \(0.542686\pi\)
\(920\) 1.51422e6 0.0589821
\(921\) 3.68332e7 1.43084
\(922\) −3.00291e6 −0.116336
\(923\) −2.35272e7 −0.909005
\(924\) 1.22103e7 0.470484
\(925\) −5.39129e7 −2.07176
\(926\) 1.05956e7 0.406068
\(927\) 5.82274e6 0.222550
\(928\) 2.43769e7 0.929197
\(929\) 3.48541e7 1.32500 0.662499 0.749063i \(-0.269496\pi\)
0.662499 + 0.749063i \(0.269496\pi\)
\(930\) 280777. 0.0106452
\(931\) −407288. −0.0154003
\(932\) −5.20532e6 −0.196294
\(933\) −5.63574e7 −2.11957
\(934\) −1.55183e7 −0.582071
\(935\) −2.78224e7 −1.04080
\(936\) −1.89134e6 −0.0705634
\(937\) −4.40806e7 −1.64021 −0.820104 0.572215i \(-0.806084\pi\)
−0.820104 + 0.572215i \(0.806084\pi\)
\(938\) −7.66149e6 −0.284319
\(939\) 3.34478e7 1.23795
\(940\) 5.27554e7 1.94736
\(941\) −2.15485e7 −0.793309 −0.396654 0.917968i \(-0.629829\pi\)
−0.396654 + 0.917968i \(0.629829\pi\)
\(942\) 286954. 0.0105362
\(943\) 274777. 0.0100624
\(944\) 8.99246e6 0.328434
\(945\) −4.46400e7 −1.62609
\(946\) −4.42416e6 −0.160732
\(947\) 4.46945e7 1.61949 0.809746 0.586780i \(-0.199605\pi\)
0.809746 + 0.586780i \(0.199605\pi\)
\(948\) −2.57575e7 −0.930856
\(949\) 2.66051e7 0.958959
\(950\) 1.51338e6 0.0544050
\(951\) 1.81119e7 0.649400
\(952\) 2.50756e7 0.896725
\(953\) −9.80512e6 −0.349720 −0.174860 0.984593i \(-0.555947\pi\)
−0.174860 + 0.984593i \(0.555947\pi\)
\(954\) −126338. −0.00449431
\(955\) −8.83014e7 −3.13299
\(956\) 4.76056e7 1.68466
\(957\) 1.53911e7 0.543237
\(958\) 896249. 0.0315511
\(959\) −1.07811e7 −0.378544
\(960\) −2.42709e7 −0.849977
\(961\) −2.86200e7 −0.999681
\(962\) −5.48852e6 −0.191213
\(963\) 1.01873e6 0.0353991
\(964\) 2.55215e7 0.884534
\(965\) −1.75579e7 −0.606952
\(966\) −623033. −0.0214817
\(967\) 1.94270e7 0.668097 0.334048 0.942556i \(-0.391585\pi\)
0.334048 + 0.942556i \(0.391585\pi\)
\(968\) −1.41243e7 −0.484483
\(969\) 3.89197e6 0.133156
\(970\) 1.78147e7 0.607923
\(971\) −4.95650e7 −1.68705 −0.843524 0.537092i \(-0.819523\pi\)
−0.843524 + 0.537092i \(0.819523\pi\)
\(972\) −1.07385e7 −0.364567
\(973\) −4.11594e7 −1.39376
\(974\) −9.88828e6 −0.333982
\(975\) 3.64894e7 1.22929
\(976\) −2.19739e7 −0.738384
\(977\) −6.61054e6 −0.221565 −0.110782 0.993845i \(-0.535336\pi\)
−0.110782 + 0.993845i \(0.535336\pi\)
\(978\) −1.40052e7 −0.468213
\(979\) −2.00072e6 −0.0667161
\(980\) 8.14638e6 0.270956
\(981\) −2.19458e6 −0.0728078
\(982\) −1.42451e7 −0.471396
\(983\) −1.39873e7 −0.461690 −0.230845 0.972991i \(-0.574149\pi\)
−0.230845 + 0.972991i \(0.574149\pi\)
\(984\) 3.52484e6 0.116052
\(985\) 3.73093e6 0.122526
\(986\) 1.49742e7 0.490513
\(987\) −4.58185e7 −1.49709
\(988\) −1.39013e6 −0.0453068
\(989\) −2.03687e6 −0.0662173
\(990\) 1.51193e6 0.0490278
\(991\) 2.21421e6 0.0716202 0.0358101 0.999359i \(-0.488599\pi\)
0.0358101 + 0.999359i \(0.488599\pi\)
\(992\) 456212. 0.0147193
\(993\) −5.01271e6 −0.161324
\(994\) −1.69508e7 −0.544155
\(995\) −4.87959e7 −1.56252
\(996\) 1.96241e7 0.626817
\(997\) 6.77351e6 0.215812 0.107906 0.994161i \(-0.465585\pi\)
0.107906 + 0.994161i \(0.465585\pi\)
\(998\) −2.20059e6 −0.0699379
\(999\) −2.91219e7 −0.923223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.6.a.a.1.18 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.6.a.a.1.18 38 1.1 even 1 trivial