Properties

Label 198.2.b
Level $198$
Weight $2$
Character orbit 198.b
Rep. character $\chi_{198}(197,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $72$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 198.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(198, [\chi])\).

Total New Old
Modular forms 44 4 40
Cusp forms 28 4 24
Eisenstein series 16 0 16

Trace form

\( 4 q + 4 q^{4} + 4 q^{16} + 12 q^{22} - 12 q^{25} + 8 q^{31} - 24 q^{34} - 40 q^{37} + 28 q^{49} - 16 q^{55} + 4 q^{64} + 32 q^{67} - 24 q^{82} + 12 q^{88} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(198, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
198.2.b.a 198.b 33.d $2$ $1.581$ \(\Q(\sqrt{-2}) \) None 198.2.b.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+q^{4}+2\beta q^{5}-q^{8}-2\beta q^{10}+\cdots\)
198.2.b.b 198.b 33.d $2$ $1.581$ \(\Q(\sqrt{-2}) \) None 198.2.b.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+q^{4}+2\beta q^{5}+q^{8}+2\beta q^{10}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(198, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(198, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 2}\)