Defining parameters
Level: | \( N \) | \(=\) | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 198.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 33 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(198, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 4 | 40 |
Cusp forms | 28 | 4 | 24 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(198, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
198.2.b.a | $2$ | $1.581$ | \(\Q(\sqrt{-2}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}+q^{4}+2\beta q^{5}-q^{8}-2\beta q^{10}+\cdots\) |
198.2.b.b | $2$ | $1.581$ | \(\Q(\sqrt{-2}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}+q^{4}+2\beta q^{5}+q^{8}+2\beta q^{10}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(198, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(198, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 2}\)