Properties

Label 1980.2.y
Level $1980$
Weight $2$
Character orbit 1980.y
Rep. character $\chi_{1980}(1297,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $60$
Newform subspaces $4$
Sturm bound $864$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1980 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1980.y (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(864\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1980, [\chi])\).

Total New Old
Modular forms 912 60 852
Cusp forms 816 60 756
Eisenstein series 96 0 96

Trace form

\( 60 q - 4 q^{5} - 8 q^{11} - 10 q^{23} + 18 q^{25} + 16 q^{31} + 2 q^{37} - 36 q^{47} + 12 q^{53} + 18 q^{55} - 6 q^{67} + 4 q^{71} + 20 q^{77} + 24 q^{91} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1980, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1980.2.y.a 1980.y 55.e $4$ $15.810$ \(\Q(i, \sqrt{11})\) None 220.2.k.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-2\beta _{1})q^{5}+(-\beta _{2}-\beta _{3})q^{7}+\beta _{3}q^{11}+\cdots\)
1980.2.y.b 1980.y 55.e $8$ $15.810$ 8.0.303595776.1 \(\Q(\sqrt{-11}) \) 220.2.k.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-\beta _{1}-\beta _{3})q^{5}+(\beta _{1}+\beta _{4}-\beta _{7})q^{11}+\cdots\)
1980.2.y.c 1980.y 55.e $24$ $15.810$ None 660.2.x.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$
1980.2.y.d 1980.y 55.e $24$ $15.810$ None 1980.2.y.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1980, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1980, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(660, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(990, [\chi])\)\(^{\oplus 2}\)