Defining parameters
Level: | \( N \) | \(=\) | \( 1980 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1980.y (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(864\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1980, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 912 | 60 | 852 |
Cusp forms | 816 | 60 | 756 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1980, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1980.2.y.a | $4$ | $15.810$ | \(\Q(i, \sqrt{11})\) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+(1-2\beta _{1})q^{5}+(-\beta _{2}-\beta _{3})q^{7}+\beta _{3}q^{11}+\cdots\) |
1980.2.y.b | $8$ | $15.810$ | 8.0.303595776.1 | \(\Q(\sqrt{-11}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{1}-\beta _{3})q^{5}+(\beta _{1}+\beta _{4}-\beta _{7})q^{11}+\cdots\) |
1980.2.y.c | $24$ | $15.810$ | None | \(0\) | \(0\) | \(-8\) | \(0\) | ||
1980.2.y.d | $24$ | $15.810$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1980, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1980, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(660, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(990, [\chi])\)\(^{\oplus 2}\)