Properties

Label 2.32
Level 2
Weight 32
Dimension 3
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 8
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2 \)
Weight: \( k \) = \( 32 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{32}(\Gamma_1(2))\).

Total New Old
Modular forms 9 3 6
Cusp forms 7 3 4
Eisenstein series 2 0 2

Trace form

\( 3 q - 32768 q^{2} - 3267708 q^{3} + 3221225472 q^{4} + 16188643050 q^{5} - 1202609061888 q^{6} - 40339061108184 q^{7} - 35184372088832 q^{8} + 506242286116911 q^{9} + 22\!\cdots\!00 q^{10} + 17\!\cdots\!36 q^{11}+ \cdots + 17\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{32}^{\mathrm{new}}(\Gamma_1(2))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2.32.a \(\chi_{2}(1, \cdot)\) 2.32.a.a 1 1
2.32.a.b 2

Decomposition of \(S_{32}^{\mathrm{old}}(\Gamma_1(2))\) into lower level spaces

\( S_{32}^{\mathrm{old}}(\Gamma_1(2)) \cong \) \(S_{32}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)