Defining parameters
Level: | \( N \) | \(=\) | \( 2 \) |
Weight: | \( k \) | \(=\) | \( 34 \) |
Character orbit: | \([\chi]\) | \(=\) | 2.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{34}(\Gamma_0(2))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9 | 3 | 6 |
Cusp forms | 7 | 3 | 4 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(1\) |
\(-\) | \(2\) |
Trace form
Decomposition of \(S_{34}^{\mathrm{new}}(\Gamma_0(2))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
2.34.a.a | $1$ | $13.797$ | \(\Q\) | None | \(-65536\) | \(-133005564\) | \(538799132550\) | \(-33\!\cdots\!68\) | $+$ | \(q-2^{16}q^{2}-133005564q^{3}+2^{32}q^{4}+\cdots\) | |
2.34.a.b | $2$ | $13.797$ | \(\mathbb{Q}[x]/(x^{2} - \cdots)\) | None | \(131072\) | \(8356488\) | \(-5332476660\) | \(13\!\cdots\!56\) | $-$ | \(q+2^{16}q^{2}+(4178244-\beta )q^{3}+2^{32}q^{4}+\cdots\) |
Decomposition of \(S_{34}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces
\( S_{34}^{\mathrm{old}}(\Gamma_0(2)) \simeq \) \(S_{34}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)