Properties

Label 2.34.a
Level $2$
Weight $34$
Character orbit 2.a
Rep. character $\chi_{2}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $8$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 34 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(8\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{34}(\Gamma_0(2))\).

Total New Old
Modular forms 9 3 6
Cusp forms 7 3 4
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)Dim
\(+\)\(1\)
\(-\)\(2\)

Trace form

\( 3 q + 65536 q^{2} - 124649076 q^{3} + 12884901888 q^{4} + 533466655890 q^{5} + 9264303439872 q^{6} + 99371784824088 q^{7} + 281474976710656 q^{8} + 18\!\cdots\!99 q^{9} - 35\!\cdots\!60 q^{10} - 24\!\cdots\!04 q^{11}+ \cdots - 19\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{34}^{\mathrm{new}}(\Gamma_0(2))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
2.34.a.a 2.a 1.a $1$ $13.797$ \(\Q\) None 2.34.a.a \(-65536\) \(-133005564\) \(538799132550\) \(-33\!\cdots\!68\) $+$ $\mathrm{SU}(2)$ \(q-2^{16}q^{2}-133005564q^{3}+2^{32}q^{4}+\cdots\)
2.34.a.b 2.a 1.a $2$ $13.797$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 2.34.a.b \(131072\) \(8356488\) \(-5332476660\) \(13\!\cdots\!56\) $-$ $\mathrm{SU}(2)$ \(q+2^{16}q^{2}+(4178244-\beta )q^{3}+2^{32}q^{4}+\cdots\)

Decomposition of \(S_{34}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces

\( S_{34}^{\mathrm{old}}(\Gamma_0(2)) \simeq \) \(S_{34}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)