Defining parameters
Level: | \( N \) | \(=\) | \( 20 = 2^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 20.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(20))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 3 | 33 |
Cusp forms | 30 | 3 | 27 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(20))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
20.12.a.a | $1$ | $15.367$ | \(\Q\) | None | \(0\) | \(306\) | \(-3125\) | \(-32074\) | $-$ | $+$ | \(q+306q^{3}-5^{5}q^{5}-32074q^{7}-83511q^{9}+\cdots\) | |
20.12.a.b | $2$ | $15.367$ | \(\Q(\sqrt{46729}) \) | None | \(0\) | \(220\) | \(6250\) | \(3340\) | $-$ | $-$ | \(q+(110-\beta )q^{3}+5^{5}q^{5}+(1670-111\beta )q^{7}+\cdots\) |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(20))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(20)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)