Properties

Label 20.12.a
Level $20$
Weight $12$
Character orbit 20.a
Rep. character $\chi_{20}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $36$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 20.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(36\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(20))\).

Total New Old
Modular forms 36 3 33
Cusp forms 30 3 27
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(1\)

Trace form

\( 3 q + 526 q^{3} + 3125 q^{5} - 28734 q^{7} - 39773 q^{9} + 293040 q^{11} + 1437654 q^{13} - 268750 q^{15} + 3959022 q^{17} + 3160332 q^{19} + 32048108 q^{21} + 22871382 q^{23} + 29296875 q^{25} - 31679468 q^{27}+ \cdots - 25109887440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(20))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
20.12.a.a 20.a 1.a $1$ $15.367$ \(\Q\) None 20.12.a.a \(0\) \(306\) \(-3125\) \(-32074\) $-$ $+$ $\mathrm{SU}(2)$ \(q+306q^{3}-5^{5}q^{5}-32074q^{7}-83511q^{9}+\cdots\)
20.12.a.b 20.a 1.a $2$ $15.367$ \(\Q(\sqrt{46729}) \) None 20.12.a.b \(0\) \(220\) \(6250\) \(3340\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(110-\beta )q^{3}+5^{5}q^{5}+(1670-111\beta )q^{7}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(20))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(20)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)