Properties

Label 200.1.g
Level $200$
Weight $1$
Character orbit 200.g
Rep. character $\chi_{200}(51,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $30$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 200.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(30\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(200, [\chi])\).

Total New Old
Modular forms 8 5 3
Cusp forms 2 2 0
Eisenstein series 6 3 3

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q + 2 q^{4} - 2 q^{6} + O(q^{10}) \) \( 2 q + 2 q^{4} - 2 q^{6} - 2 q^{11} + 2 q^{16} - 2 q^{19} - 2 q^{24} - 2 q^{34} - 2 q^{41} - 2 q^{44} + 2 q^{49} + 2 q^{51} + 2 q^{54} + 4 q^{59} + 2 q^{64} + 2 q^{66} - 2 q^{76} - 2 q^{81} + 4 q^{86} - 2 q^{89} - 2 q^{96} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
200.1.g.a 200.g 8.d $1$ $0.100$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-2}) \) None 200.1.g.a \(-1\) \(1\) \(0\) \(0\) \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{8}-q^{11}+\cdots\)
200.1.g.b 200.g 8.d $1$ $0.100$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-2}) \) None 200.1.g.a \(1\) \(-1\) \(0\) \(0\) \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{8}-q^{11}+\cdots\)