Properties

Label 200.12.c
Level $200$
Weight $12$
Character orbit 200.c
Rep. character $\chi_{200}(49,\cdot)$
Character field $\Q$
Dimension $50$
Newform subspaces $9$
Sturm bound $360$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(360\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(200, [\chi])\).

Total New Old
Modular forms 342 50 292
Cusp forms 318 50 268
Eisenstein series 24 0 24

Trace form

\( 50 q - 3125104 q^{9} - 308062 q^{11} + 8361838 q^{19} - 42310484 q^{21} - 213782984 q^{29} + 342797492 q^{31} + 3504195032 q^{39} + 590874262 q^{41} - 23170394058 q^{49} + 1946263170 q^{51} + 20750633168 q^{59}+ \cdots + 89854048292 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
200.12.c.a 200.c 5.b $2$ $153.669$ \(\Q(\sqrt{-1}) \) None 40.12.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+260\beta q^{3}-7574\beta q^{7}-93253 q^{9}+\cdots\)
200.12.c.b 200.c 5.b $2$ $153.669$ \(\Q(\sqrt{-1}) \) None 8.12.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+18\beta q^{3}-27732\beta q^{7}+175851 q^{9}+\cdots\)
200.12.c.c 200.c 5.b $4$ $153.669$ \(\Q(i, \sqrt{109})\) None 8.12.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-14\beta _{1}+\beta _{2})q^{3}+(22764\beta _{1}-42\beta _{2}+\cdots)q^{7}+\cdots\)
200.12.c.d 200.c 5.b $4$ $153.669$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 40.12.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-198\beta _{1}q^{3}+(-1408\beta _{1}-\beta _{2})q^{7}+\cdots\)
200.12.c.e 200.c 5.b $4$ $153.669$ \(\Q(i, \sqrt{57})\) None 40.12.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(63\beta _{1}-\beta _{2})q^{3}+(6053\beta _{1}-65\beta _{2}+\cdots)q^{7}+\cdots\)
200.12.c.f 200.c 5.b $6$ $153.669$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 40.12.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(13\beta _{1}-\beta _{3})q^{3}+(-255\beta _{1}-5^{2}\beta _{3}+\cdots)q^{7}+\cdots\)
200.12.c.g 200.c 5.b $6$ $153.669$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 40.12.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2^{4}\beta _{1}-\beta _{3})q^{3}+(-16815\beta _{1}-3^{3}\beta _{3}+\cdots)q^{7}+\cdots\)
200.12.c.h 200.c 5.b $10$ $153.669$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 200.12.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}-51\beta _{4})q^{3}+(-46\beta _{1}+707\beta _{4}+\cdots)q^{7}+\cdots\)
200.12.c.i 200.c 5.b $12$ $153.669$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 200.12.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+83\beta _{7})q^{3}+(-5^{2}\beta _{1}-7962\beta _{7}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(200, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(200, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)