Properties

Label 200.2.o
Level $200$
Weight $2$
Character orbit 200.o
Rep. character $\chi_{200}(29,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $112$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.o (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 200 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(200, [\chi])\).

Total New Old
Modular forms 128 128 0
Cusp forms 112 112 0
Eisenstein series 16 16 0

Trace form

\( 112 q - 5 q^{2} - 3 q^{4} + q^{6} + 10 q^{8} - 30 q^{9} + O(q^{10}) \) \( 112 q - 5 q^{2} - 3 q^{4} + q^{6} + 10 q^{8} - 30 q^{9} - 9 q^{10} - 5 q^{12} - 3 q^{14} - 2 q^{15} - 15 q^{16} - 10 q^{17} - 17 q^{20} - 30 q^{22} - 10 q^{23} - 16 q^{24} - 6 q^{25} - 14 q^{26} + 15 q^{28} - 33 q^{30} - 18 q^{31} - 10 q^{33} + 9 q^{34} + 41 q^{36} + 45 q^{38} - 10 q^{39} - 14 q^{40} - 10 q^{41} + 75 q^{42} - 32 q^{44} + 13 q^{46} - 10 q^{47} - 70 q^{48} - 80 q^{49} - 19 q^{50} - 100 q^{52} + 43 q^{54} - 34 q^{55} + 36 q^{56} - 30 q^{58} - 28 q^{60} + 20 q^{62} + 60 q^{63} - 36 q^{64} + 40 q^{65} + 40 q^{66} + 42 q^{70} + 22 q^{71} - 65 q^{72} - 10 q^{73} + 4 q^{74} - 36 q^{76} - 55 q^{78} + 14 q^{79} - 76 q^{80} - 6 q^{81} + 78 q^{84} - 59 q^{86} - 10 q^{87} + 110 q^{88} + 24 q^{89} + 49 q^{90} + 90 q^{92} + 45 q^{94} - 86 q^{95} + 46 q^{96} - 50 q^{97} + 90 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
200.2.o.a 200.o 200.o $112$ $1.597$ None 200.2.o.a \(-5\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$