Defining parameters
Level: | \( N \) | = | \( 200 = 2^{3} \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 10 \) | ||
Sturm bound: | \(14400\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(200))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6168 | 3152 | 3016 |
Cusp forms | 5832 | 3070 | 2762 |
Eisenstein series | 336 | 82 | 254 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(200))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
200.6.a | \(\chi_{200}(1, \cdot)\) | 200.6.a.a | 1 | 1 |
200.6.a.b | 1 | |||
200.6.a.c | 1 | |||
200.6.a.d | 1 | |||
200.6.a.e | 2 | |||
200.6.a.f | 2 | |||
200.6.a.g | 2 | |||
200.6.a.h | 3 | |||
200.6.a.i | 3 | |||
200.6.a.j | 4 | |||
200.6.a.k | 4 | |||
200.6.c | \(\chi_{200}(49, \cdot)\) | 200.6.c.a | 2 | 1 |
200.6.c.b | 2 | |||
200.6.c.c | 2 | |||
200.6.c.d | 2 | |||
200.6.c.e | 4 | |||
200.6.c.f | 4 | |||
200.6.c.g | 6 | |||
200.6.d | \(\chi_{200}(101, \cdot)\) | 200.6.d.a | 4 | 1 |
200.6.d.b | 20 | |||
200.6.d.c | 20 | |||
200.6.d.d | 20 | |||
200.6.d.e | 28 | |||
200.6.f | \(\chi_{200}(149, \cdot)\) | 200.6.f.a | 8 | 1 |
200.6.f.b | 20 | |||
200.6.f.c | 20 | |||
200.6.f.d | 40 | |||
200.6.j | \(\chi_{200}(7, \cdot)\) | None | 0 | 2 |
200.6.k | \(\chi_{200}(43, \cdot)\) | n/a | 176 | 2 |
200.6.m | \(\chi_{200}(41, \cdot)\) | n/a | 148 | 4 |
200.6.o | \(\chi_{200}(29, \cdot)\) | n/a | 592 | 4 |
200.6.q | \(\chi_{200}(9, \cdot)\) | n/a | 152 | 4 |
200.6.t | \(\chi_{200}(21, \cdot)\) | n/a | 592 | 4 |
200.6.v | \(\chi_{200}(3, \cdot)\) | n/a | 1184 | 8 |
200.6.w | \(\chi_{200}(23, \cdot)\) | None | 0 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(200))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(200)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 1}\)