Properties

Label 200.6
Level 200
Weight 6
Dimension 3070
Nonzero newspaces 10
Sturm bound 14400
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(14400\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(200))\).

Total New Old
Modular forms 6168 3152 3016
Cusp forms 5832 3070 2762
Eisenstein series 336 82 254

Trace form

\( 3070 q - 14 q^{2} + 8 q^{3} + 8 q^{4} + 41 q^{5} - 136 q^{6} - 92 q^{7} - 260 q^{8} + 779 q^{9} - 16 q^{10} + 144 q^{11} - 380 q^{12} - 1878 q^{13} + 3100 q^{14} + 2456 q^{15} - 292 q^{16} + 614 q^{17}+ \cdots + 286056 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(200))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
200.6.a \(\chi_{200}(1, \cdot)\) 200.6.a.a 1 1
200.6.a.b 1
200.6.a.c 1
200.6.a.d 1
200.6.a.e 2
200.6.a.f 2
200.6.a.g 2
200.6.a.h 3
200.6.a.i 3
200.6.a.j 4
200.6.a.k 4
200.6.c \(\chi_{200}(49, \cdot)\) 200.6.c.a 2 1
200.6.c.b 2
200.6.c.c 2
200.6.c.d 2
200.6.c.e 4
200.6.c.f 4
200.6.c.g 6
200.6.d \(\chi_{200}(101, \cdot)\) 200.6.d.a 4 1
200.6.d.b 20
200.6.d.c 20
200.6.d.d 20
200.6.d.e 28
200.6.f \(\chi_{200}(149, \cdot)\) 200.6.f.a 8 1
200.6.f.b 20
200.6.f.c 20
200.6.f.d 40
200.6.j \(\chi_{200}(7, \cdot)\) None 0 2
200.6.k \(\chi_{200}(43, \cdot)\) n/a 176 2
200.6.m \(\chi_{200}(41, \cdot)\) n/a 148 4
200.6.o \(\chi_{200}(29, \cdot)\) n/a 592 4
200.6.q \(\chi_{200}(9, \cdot)\) n/a 152 4
200.6.t \(\chi_{200}(21, \cdot)\) n/a 592 4
200.6.v \(\chi_{200}(3, \cdot)\) n/a 1184 8
200.6.w \(\chi_{200}(23, \cdot)\) None 0 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(200))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(200)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 1}\)