Properties

Label 2016.1.dd.a.319.2
Level $2016$
Weight $1$
Character 2016.319
Analytic conductor $1.006$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,1,Mod(319,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.319");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2016.dd (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.254016.1

Embedding invariants

Embedding label 319.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2016.319
Dual form 2016.1.dd.a.1087.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +1.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +1.00000i q^{7} -1.00000 q^{9} +(-0.500000 + 0.866025i) q^{13} +(0.500000 - 0.866025i) q^{17} +(-0.866025 + 0.500000i) q^{19} -1.00000 q^{21} +2.00000i q^{23} -1.00000 q^{25} -1.00000i q^{27} +(-0.500000 - 0.866025i) q^{29} +(0.866025 - 0.500000i) q^{31} +(0.500000 + 0.866025i) q^{37} +(-0.866025 - 0.500000i) q^{39} +(0.500000 - 0.866025i) q^{41} +(-0.866025 + 0.500000i) q^{43} +(0.866025 + 0.500000i) q^{47} -1.00000 q^{49} +(0.866025 + 0.500000i) q^{51} +(-0.500000 + 0.866025i) q^{53} +(-0.500000 - 0.866025i) q^{57} +(0.866025 - 0.500000i) q^{59} +(-0.500000 + 0.866025i) q^{61} -1.00000i q^{63} +(-0.866025 + 0.500000i) q^{67} -2.00000 q^{69} +(0.500000 - 0.866025i) q^{73} -1.00000i q^{75} +(-0.866025 - 0.500000i) q^{79} +1.00000 q^{81} +(0.866025 - 0.500000i) q^{83} +(0.866025 - 0.500000i) q^{87} +(0.500000 + 0.866025i) q^{89} +(-0.866025 - 0.500000i) q^{91} +(0.500000 + 0.866025i) q^{93} +(0.500000 + 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{9} - 2 q^{13} + 2 q^{17} - 4 q^{21} - 4 q^{25} - 2 q^{29} + 2 q^{37} + 2 q^{41} - 4 q^{49} - 2 q^{53} - 2 q^{57} - 2 q^{61} - 8 q^{69} + 2 q^{73} + 4 q^{81} + 2 q^{89} + 2 q^{93} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 1.00000i
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 1.00000i 1.00000i
\(8\) 0 0
\(9\) −1.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(18\) 0 0
\(19\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −1.00000 −1.00000
\(22\) 0 0
\(23\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −1.00000
\(26\) 0 0
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) −0.866025 0.500000i −0.866025 0.500000i
\(40\) 0 0
\(41\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(42\) 0 0
\(43\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −1.00000 −1.00000
\(50\) 0 0
\(51\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(52\) 0 0
\(53\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.500000 0.866025i −0.500000 0.866025i
\(58\) 0 0
\(59\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 1.00000i 1.00000i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) −2.00000 −2.00000
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(74\) 0 0
\(75\) 1.00000i 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.866025 0.500000i 0.866025 0.500000i
\(88\) 0 0
\(89\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) −0.866025 0.500000i −0.866025 0.500000i
\(92\) 0 0
\(93\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(110\) 0 0
\(111\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(112\) 0 0
\(113\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.500000 0.866025i 0.500000 0.866025i
\(118\) 0 0
\(119\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) −0.500000 0.866025i −0.500000 0.866025i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −0.500000 0.866025i −0.500000 0.866025i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.00000i 1.00000i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) −0.866025 0.500000i −0.866025 0.500000i
\(160\) 0 0
\(161\) −2.00000 −2.00000
\(162\) 0 0
\(163\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0.866025 0.500000i 0.866025 0.500000i
\(172\) 0 0
\(173\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(174\) 0 0
\(175\) 1.00000i 1.00000i
\(176\) 0 0
\(177\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(178\) 0 0
\(179\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) −0.866025 0.500000i −0.866025 0.500000i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.00000 1.00000
\(190\) 0 0
\(191\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(198\) 0 0
\(199\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −0.500000 0.866025i −0.500000 0.866025i
\(202\) 0 0
\(203\) 0.866025 0.500000i 0.866025 0.500000i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.00000i 2.00000i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(218\) 0 0
\(219\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(220\) 0 0
\(221\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(222\) 0 0
\(223\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 1.00000 1.00000
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.500000 0.866025i 0.500000 0.866025i
\(238\) 0 0
\(239\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 1.00000i 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.00000i 1.00000i
\(248\) 0 0
\(249\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(250\) 0 0
\(251\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(258\) 0 0
\(259\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(260\) 0 0
\(261\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(268\) 0 0
\(269\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(270\) 0 0
\(271\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 0 0
\(273\) 0.500000 0.866025i 0.500000 0.866025i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(280\) 0 0
\(281\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0 0
\(283\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(292\) 0 0
\(293\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.73205 1.00000i −1.73205 1.00000i
\(300\) 0 0
\(301\) −0.500000 0.866025i −0.500000 0.866025i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.500000 0.866025i −0.500000 0.866025i
\(322\) 0 0
\(323\) 1.00000i 1.00000i
\(324\) 0 0
\(325\) 0.500000 0.866025i 0.500000 0.866025i
\(326\) 0 0
\(327\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(328\) 0 0
\(329\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(330\) 0 0
\(331\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0 0
\(333\) −0.500000 0.866025i −0.500000 0.866025i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(358\) 0 0
\(359\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 1.00000i 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(370\) 0 0
\(371\) −0.866025 0.500000i −0.866025 0.500000i
\(372\) 0 0
\(373\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.00000 1.00000
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.866025 0.500000i 0.866025 0.500000i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0.866025 0.500000i 0.866025 0.500000i
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 1.00000i 1.00000i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(418\) 0 0
\(419\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −0.866025 0.500000i −0.866025 0.500000i
\(424\) 0 0
\(425\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(426\) 0 0
\(427\) −0.866025 0.500000i −0.866025 0.500000i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) 0 0
\(433\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.00000 1.73205i −1.00000 1.73205i
\(438\) 0 0
\(439\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(458\) 0 0
\(459\) −0.866025 0.500000i −0.866025 0.500000i
\(460\) 0 0
\(461\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) −0.500000 0.866025i −0.500000 0.866025i
\(470\) 0 0
\(471\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.866025 0.500000i 0.866025 0.500000i
\(476\) 0 0
\(477\) 0.500000 0.866025i 0.500000 0.866025i
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −1.00000 −1.00000
\(482\) 0 0
\(483\) 2.00000i 2.00000i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(488\) 0 0
\(489\) −0.500000 0.866025i −0.500000 0.866025i
\(490\) 0 0
\(491\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) −1.00000 −1.00000
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0.500000 0.866025i 0.500000 0.866025i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(512\) 0 0
\(513\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(520\) 0 0
\(521\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 1.00000 1.00000
\(526\) 0 0
\(527\) 1.00000i 1.00000i
\(528\) 0 0
\(529\) −3.00000 −3.00000
\(530\) 0 0
\(531\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(532\) 0 0
\(533\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(548\) 0 0
\(549\) 0.500000 0.866025i 0.500000 0.866025i
\(550\) 0 0
\(551\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(552\) 0 0
\(553\) 0.500000 0.866025i 0.500000 0.866025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 1.00000i 1.00000i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000i 1.00000i
\(568\) 0 0
\(569\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0.500000 0.866025i 0.500000 0.866025i
\(574\) 0 0
\(575\) 2.00000i 2.00000i
\(576\) 0 0
\(577\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(578\) 0 0
\(579\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(580\) 0 0
\(581\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(590\) 0 0
\(591\) 2.00000i 2.00000i
\(592\) 0 0
\(593\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(598\) 0 0
\(599\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0.866025 0.500000i 0.866025 0.500000i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(610\) 0 0
\(611\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(612\) 0 0
\(613\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 2.00000 2.00000
\(622\) 0 0
\(623\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.00000 1.00000
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.500000 0.866025i 0.500000 0.866025i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(652\) 0 0
\(653\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(658\) 0 0
\(659\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.73205 1.00000i 1.73205 1.00000i
\(668\) 0 0
\(669\) −0.500000 0.866025i −0.500000 0.866025i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0 0
\(675\) 1.00000i 1.00000i
\(676\) 0 0
\(677\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.500000 0.866025i −0.500000 0.866025i
\(690\) 0 0
\(691\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.500000 0.866025i −0.500000 0.866025i
\(698\) 0 0
\(699\) 0.866025 0.500000i 0.866025 0.500000i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −0.866025 0.500000i −0.866025 0.500000i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(710\) 0 0
\(711\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(712\) 0 0
\(713\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(718\) 0 0
\(719\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(726\) 0 0
\(727\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 1.00000i 1.00000i
\(732\) 0 0
\(733\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 1.00000 1.00000
\(742\) 0 0
\(743\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(748\) 0 0
\(749\) −0.500000 0.866025i −0.500000 0.866025i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 2.00000 2.00000
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.00000i 1.00000i
\(768\) 0 0
\(769\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 2.00000i 2.00000i
\(772\) 0 0
\(773\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(774\) 0 0
\(775\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(776\) 0 0
\(777\) −0.500000 0.866025i −0.500000 0.866025i
\(778\) 0 0
\(779\) 1.00000i 1.00000i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(792\) 0 0
\(793\) −0.500000 0.866025i −0.500000 0.866025i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(798\) 0 0
\(799\) 0.866025 0.500000i 0.866025 0.500000i
\(800\) 0 0
\(801\) −0.500000 0.866025i −0.500000 0.866025i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(808\) 0 0
\(809\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.500000 0.866025i 0.500000 0.866025i
\(818\) 0 0
\(819\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(820\) 0 0
\(821\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.500000 0.866025i −0.500000 0.866025i
\(838\) 0 0
\(839\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.00000i 1.00000i
\(848\) 0 0
\(849\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(850\) 0 0
\(851\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(852\) 0 0
\(853\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(862\) 0 0
\(863\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 1.00000i 1.00000i
\(872\) 0 0
\(873\) −0.500000 0.866025i −0.500000 0.866025i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) −0.866025 0.500000i −0.866025 0.500000i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.00000 −1.00000
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.00000 1.73205i 1.00000 1.73205i
\(898\) 0 0
\(899\) −0.866025 0.500000i −0.866025 0.500000i
\(900\) 0 0
\(901\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(902\) 0 0
\(903\) 0.866025 0.500000i 0.866025 0.500000i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(920\) 0 0
\(921\) 2.00000 2.00000
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.500000 0.866025i −0.500000 0.866025i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0.866025 0.500000i 0.866025 0.500000i
\(932\) 0 0
\(933\) −0.500000 0.866025i −0.500000 0.866025i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(940\) 0 0
\(941\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) 0 0
\(943\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(950\) 0 0
\(951\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0.866025 0.500000i 0.866025 0.500000i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(968\) 0 0
\(969\) −1.00000 −1.00000
\(970\) 0 0
\(971\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) 0 0
\(973\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(974\) 0 0
\(975\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(976\) 0 0
\(977\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(982\) 0 0
\(983\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.866025 0.500000i −0.866025 0.500000i
\(988\) 0 0
\(989\) −1.00000 1.73205i −1.00000 1.73205i
\(990\) 0 0
\(991\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0.500000 0.866025i 0.500000 0.866025i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0.866025 0.500000i 0.866025 0.500000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.1.dd.a.319.2 yes 4
4.3 odd 2 inner 2016.1.dd.a.319.1 yes 4
7.2 even 3 2016.1.bw.a.1759.1 yes 4
9.7 even 3 2016.1.bw.a.1663.2 yes 4
28.23 odd 6 2016.1.bw.a.1759.2 yes 4
36.7 odd 6 2016.1.bw.a.1663.1 4
63.16 even 3 inner 2016.1.dd.a.1087.2 yes 4
252.79 odd 6 inner 2016.1.dd.a.1087.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2016.1.bw.a.1663.1 4 36.7 odd 6
2016.1.bw.a.1663.2 yes 4 9.7 even 3
2016.1.bw.a.1759.1 yes 4 7.2 even 3
2016.1.bw.a.1759.2 yes 4 28.23 odd 6
2016.1.dd.a.319.1 yes 4 4.3 odd 2 inner
2016.1.dd.a.319.2 yes 4 1.1 even 1 trivial
2016.1.dd.a.1087.1 yes 4 252.79 odd 6 inner
2016.1.dd.a.1087.2 yes 4 63.16 even 3 inner