Defining parameters
Level: | \( N \) | \(=\) | \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2016.bs (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2016, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 832 | 84 | 748 |
Cusp forms | 704 | 76 | 628 |
Eisenstein series | 128 | 8 | 120 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2016, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2016.2.bs.a | $12$ | $16.098$ | 12.0.\(\cdots\).2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{7}q^{5}+(\beta _{5}+\beta _{10}-\beta _{11})q^{7}+(\beta _{1}+\cdots)q^{11}+\cdots\) |
2016.2.bs.b | $32$ | $16.098$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
2016.2.bs.c | $32$ | $16.098$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(2016, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2016, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)