Defining parameters
Level: | \( N \) | \(=\) | \( 2020 = 2^{2} \cdot 5 \cdot 101 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2020.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 505 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(306\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2020, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 4 | 18 |
Cusp forms | 10 | 4 | 6 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2020, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
2020.1.k.a | $4$ | $1.008$ | \(\Q(\zeta_{12})\) | $D_{12}$ | None | \(\Q(\sqrt{101}) \) | \(0\) | \(0\) | \(-2\) | \(0\) | \(q-\zeta_{12}^{2}q^{5}-\zeta_{12}^{3}q^{9}+(-\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2020, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2020, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(505, [\chi])\)\(^{\oplus 3}\)