Properties

Label 2020.1.k
Level $2020$
Weight $1$
Character orbit 2020.k
Rep. character $\chi_{2020}(1413,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $1$
Sturm bound $306$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2020 = 2^{2} \cdot 5 \cdot 101 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2020.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 505 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(306\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2020, [\chi])\).

Total New Old
Modular forms 22 4 18
Cusp forms 10 4 6
Eisenstein series 12 0 12

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 2 q^{5} + 2 q^{13} - 2 q^{17} + 2 q^{23} - 2 q^{25} - 4 q^{37} + 4 q^{43} + 2 q^{47} + 2 q^{65} + 4 q^{71} - 4 q^{81} - 2 q^{85} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2020, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2020.1.k.a 2020.k 505.h $4$ $1.008$ \(\Q(\zeta_{12})\) $D_{12}$ None \(\Q(\sqrt{101}) \) 2020.1.k.a \(0\) \(0\) \(-2\) \(0\) \(q-\zeta_{12}^{2}q^{5}-\zeta_{12}^{3}q^{9}+(-\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2020, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2020, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(505, [\chi])\)\(^{\oplus 3}\)