Properties

Label 2028.2
Level 2028
Weight 2
Dimension 48690
Nonzero newspaces 24
Sturm bound 454272
Trace bound 12

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(454272\)
Trace bound: \(12\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2028))\).

Total New Old
Modular forms 115848 49510 66338
Cusp forms 111289 48690 62599
Eisenstein series 4559 820 3739

Trace form

\( 48690 q - 132 q^{4} - 66 q^{6} - 8 q^{7} - 136 q^{9} - 132 q^{10} - 24 q^{11} - 54 q^{12} - 312 q^{13} - 24 q^{15} - 132 q^{16} - 12 q^{17} - 30 q^{18} + 16 q^{19} + 96 q^{20} - 88 q^{21} - 12 q^{22} + 48 q^{23}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2028))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2028.2.a \(\chi_{2028}(1, \cdot)\) 2028.2.a.a 1 1
2028.2.a.b 1
2028.2.a.c 1
2028.2.a.d 1
2028.2.a.e 1
2028.2.a.f 1
2028.2.a.g 2
2028.2.a.h 2
2028.2.a.i 3
2028.2.a.j 3
2028.2.a.k 3
2028.2.a.l 3
2028.2.a.m 4
2028.2.b \(\chi_{2028}(337, \cdot)\) 2028.2.b.a 2 1
2028.2.b.b 2
2028.2.b.c 2
2028.2.b.d 2
2028.2.b.e 4
2028.2.b.f 6
2028.2.b.g 6
2028.2.c \(\chi_{2028}(1691, \cdot)\) n/a 288 1
2028.2.h \(\chi_{2028}(2027, \cdot)\) n/a 288 1
2028.2.i \(\chi_{2028}(529, \cdot)\) 2028.2.i.a 2 2
2028.2.i.b 2
2028.2.i.c 2
2028.2.i.d 2
2028.2.i.e 2
2028.2.i.f 2
2028.2.i.g 2
2028.2.i.h 4
2028.2.i.i 4
2028.2.i.j 6
2028.2.i.k 6
2028.2.i.l 6
2028.2.i.m 6
2028.2.i.n 8
2028.2.k \(\chi_{2028}(775, \cdot)\) n/a 308 2
2028.2.m \(\chi_{2028}(437, \cdot)\) n/a 104 2
2028.2.p \(\chi_{2028}(191, \cdot)\) n/a 576 2
2028.2.q \(\chi_{2028}(361, \cdot)\) 2028.2.q.a 2 2
2028.2.q.b 2
2028.2.q.c 2
2028.2.q.d 4
2028.2.q.e 4
2028.2.q.f 4
2028.2.q.g 4
2028.2.q.h 4
2028.2.q.i 12
2028.2.q.j 12
2028.2.r \(\chi_{2028}(23, \cdot)\) n/a 576 2
2028.2.u \(\chi_{2028}(89, \cdot)\) n/a 204 4
2028.2.w \(\chi_{2028}(19, \cdot)\) n/a 616 4
2028.2.y \(\chi_{2028}(157, \cdot)\) n/a 360 12
2028.2.z \(\chi_{2028}(155, \cdot)\) n/a 4320 12
2028.2.be \(\chi_{2028}(131, \cdot)\) n/a 4320 12
2028.2.bf \(\chi_{2028}(25, \cdot)\) n/a 384 12
2028.2.bg \(\chi_{2028}(61, \cdot)\) n/a 696 24
2028.2.bi \(\chi_{2028}(5, \cdot)\) n/a 1440 24
2028.2.bk \(\chi_{2028}(31, \cdot)\) n/a 4368 24
2028.2.bn \(\chi_{2028}(95, \cdot)\) n/a 8640 24
2028.2.bo \(\chi_{2028}(49, \cdot)\) n/a 744 24
2028.2.bp \(\chi_{2028}(35, \cdot)\) n/a 8640 24
2028.2.bs \(\chi_{2028}(7, \cdot)\) n/a 8736 48
2028.2.bu \(\chi_{2028}(41, \cdot)\) n/a 2928 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2028))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2028)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(676))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1014))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2028))\)\(^{\oplus 1}\)