Properties

Label 2028.2
Level 2028
Weight 2
Dimension 48690
Nonzero newspaces 24
Sturm bound 454272
Trace bound 12

Downloads

Learn more

Defining parameters

Level: N N = 2028=223132 2028 = 2^{2} \cdot 3 \cdot 13^{2}
Weight: k k = 2 2
Nonzero newspaces: 24 24
Sturm bound: 454272454272
Trace bound: 1212

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(2028))M_{2}(\Gamma_1(2028)).

Total New Old
Modular forms 115848 49510 66338
Cusp forms 111289 48690 62599
Eisenstein series 4559 820 3739

Trace form

48690q132q466q68q7136q9132q1024q1154q12312q1324q15132q1612q1730q18+16q19+96q2088q2112q22+48q23++36q99+O(q100) 48690 q - 132 q^{4} - 66 q^{6} - 8 q^{7} - 136 q^{9} - 132 q^{10} - 24 q^{11} - 54 q^{12} - 312 q^{13} - 24 q^{15} - 132 q^{16} - 12 q^{17} - 30 q^{18} + 16 q^{19} + 96 q^{20} - 88 q^{21} - 12 q^{22} + 48 q^{23}+ \cdots + 36 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(2028))S_{2}^{\mathrm{new}}(\Gamma_1(2028))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
2028.2.a χ2028(1,)\chi_{2028}(1, \cdot) 2028.2.a.a 1 1
2028.2.a.b 1
2028.2.a.c 1
2028.2.a.d 1
2028.2.a.e 1
2028.2.a.f 1
2028.2.a.g 2
2028.2.a.h 2
2028.2.a.i 3
2028.2.a.j 3
2028.2.a.k 3
2028.2.a.l 3
2028.2.a.m 4
2028.2.b χ2028(337,)\chi_{2028}(337, \cdot) 2028.2.b.a 2 1
2028.2.b.b 2
2028.2.b.c 2
2028.2.b.d 2
2028.2.b.e 4
2028.2.b.f 6
2028.2.b.g 6
2028.2.c χ2028(1691,)\chi_{2028}(1691, \cdot) n/a 288 1
2028.2.h χ2028(2027,)\chi_{2028}(2027, \cdot) n/a 288 1
2028.2.i χ2028(529,)\chi_{2028}(529, \cdot) 2028.2.i.a 2 2
2028.2.i.b 2
2028.2.i.c 2
2028.2.i.d 2
2028.2.i.e 2
2028.2.i.f 2
2028.2.i.g 2
2028.2.i.h 4
2028.2.i.i 4
2028.2.i.j 6
2028.2.i.k 6
2028.2.i.l 6
2028.2.i.m 6
2028.2.i.n 8
2028.2.k χ2028(775,)\chi_{2028}(775, \cdot) n/a 308 2
2028.2.m χ2028(437,)\chi_{2028}(437, \cdot) n/a 104 2
2028.2.p χ2028(191,)\chi_{2028}(191, \cdot) n/a 576 2
2028.2.q χ2028(361,)\chi_{2028}(361, \cdot) 2028.2.q.a 2 2
2028.2.q.b 2
2028.2.q.c 2
2028.2.q.d 4
2028.2.q.e 4
2028.2.q.f 4
2028.2.q.g 4
2028.2.q.h 4
2028.2.q.i 12
2028.2.q.j 12
2028.2.r χ2028(23,)\chi_{2028}(23, \cdot) n/a 576 2
2028.2.u χ2028(89,)\chi_{2028}(89, \cdot) n/a 204 4
2028.2.w χ2028(19,)\chi_{2028}(19, \cdot) n/a 616 4
2028.2.y χ2028(157,)\chi_{2028}(157, \cdot) n/a 360 12
2028.2.z χ2028(155,)\chi_{2028}(155, \cdot) n/a 4320 12
2028.2.be χ2028(131,)\chi_{2028}(131, \cdot) n/a 4320 12
2028.2.bf χ2028(25,)\chi_{2028}(25, \cdot) n/a 384 12
2028.2.bg χ2028(61,)\chi_{2028}(61, \cdot) n/a 696 24
2028.2.bi χ2028(5,)\chi_{2028}(5, \cdot) n/a 1440 24
2028.2.bk χ2028(31,)\chi_{2028}(31, \cdot) n/a 4368 24
2028.2.bn χ2028(95,)\chi_{2028}(95, \cdot) n/a 8640 24
2028.2.bo χ2028(49,)\chi_{2028}(49, \cdot) n/a 744 24
2028.2.bp χ2028(35,)\chi_{2028}(35, \cdot) n/a 8640 24
2028.2.bs χ2028(7,)\chi_{2028}(7, \cdot) n/a 8736 48
2028.2.bu χ2028(41,)\chi_{2028}(41, \cdot) n/a 2928 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(2028))S_{2}^{\mathrm{old}}(\Gamma_1(2028)) into lower level spaces

S2old(Γ1(2028)) S_{2}^{\mathrm{old}}(\Gamma_1(2028)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))18^{\oplus 18}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))9^{\oplus 9}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))6^{\oplus 6}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))6^{\oplus 6}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))3^{\oplus 3}\oplusS2new(Γ1(13))S_{2}^{\mathrm{new}}(\Gamma_1(13))12^{\oplus 12}\oplusS2new(Γ1(26))S_{2}^{\mathrm{new}}(\Gamma_1(26))8^{\oplus 8}\oplusS2new(Γ1(39))S_{2}^{\mathrm{new}}(\Gamma_1(39))6^{\oplus 6}\oplusS2new(Γ1(52))S_{2}^{\mathrm{new}}(\Gamma_1(52))4^{\oplus 4}\oplusS2new(Γ1(78))S_{2}^{\mathrm{new}}(\Gamma_1(78))4^{\oplus 4}\oplusS2new(Γ1(156))S_{2}^{\mathrm{new}}(\Gamma_1(156))2^{\oplus 2}\oplusS2new(Γ1(169))S_{2}^{\mathrm{new}}(\Gamma_1(169))6^{\oplus 6}\oplusS2new(Γ1(338))S_{2}^{\mathrm{new}}(\Gamma_1(338))4^{\oplus 4}\oplusS2new(Γ1(507))S_{2}^{\mathrm{new}}(\Gamma_1(507))3^{\oplus 3}\oplusS2new(Γ1(676))S_{2}^{\mathrm{new}}(\Gamma_1(676))2^{\oplus 2}\oplusS2new(Γ1(1014))S_{2}^{\mathrm{new}}(\Gamma_1(1014))2^{\oplus 2}