Properties

Label 2031.4.a.d.1.7
Level $2031$
Weight $4$
Character 2031.1
Self dual yes
Analytic conductor $119.833$
Analytic rank $0$
Dimension $94$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,4,Mod(1,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2031.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.832879222\)
Analytic rank: \(0\)
Dimension: \(94\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 2031.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.02302 q^{2} +3.00000 q^{3} +17.2308 q^{4} -13.6796 q^{5} -15.0691 q^{6} -35.1340 q^{7} -46.3664 q^{8} +9.00000 q^{9} +68.7130 q^{10} +39.5183 q^{11} +51.6923 q^{12} +28.5863 q^{13} +176.479 q^{14} -41.0388 q^{15} +95.0532 q^{16} -121.549 q^{17} -45.2072 q^{18} +21.0701 q^{19} -235.710 q^{20} -105.402 q^{21} -198.501 q^{22} +179.013 q^{23} -139.099 q^{24} +62.1318 q^{25} -143.590 q^{26} +27.0000 q^{27} -605.386 q^{28} +128.363 q^{29} +206.139 q^{30} +146.982 q^{31} -106.523 q^{32} +118.555 q^{33} +610.542 q^{34} +480.620 q^{35} +155.077 q^{36} -227.825 q^{37} -105.836 q^{38} +85.7590 q^{39} +634.274 q^{40} -217.840 q^{41} +529.437 q^{42} -387.632 q^{43} +680.930 q^{44} -123.117 q^{45} -899.188 q^{46} -305.512 q^{47} +285.159 q^{48} +891.400 q^{49} -312.090 q^{50} -364.646 q^{51} +492.564 q^{52} -413.534 q^{53} -135.622 q^{54} -540.595 q^{55} +1629.04 q^{56} +63.2103 q^{57} -644.770 q^{58} +841.542 q^{59} -707.131 q^{60} -621.544 q^{61} -738.296 q^{62} -316.206 q^{63} -225.356 q^{64} -391.050 q^{65} -595.504 q^{66} -678.618 q^{67} -2094.38 q^{68} +537.040 q^{69} -2414.16 q^{70} +214.078 q^{71} -417.297 q^{72} -957.035 q^{73} +1144.37 q^{74} +186.395 q^{75} +363.054 q^{76} -1388.44 q^{77} -430.769 q^{78} -929.253 q^{79} -1300.29 q^{80} +81.0000 q^{81} +1094.21 q^{82} -512.188 q^{83} -1816.16 q^{84} +1662.74 q^{85} +1947.08 q^{86} +385.089 q^{87} -1832.32 q^{88} +1022.01 q^{89} +618.417 q^{90} -1004.35 q^{91} +3084.54 q^{92} +440.947 q^{93} +1534.59 q^{94} -288.231 q^{95} -319.570 q^{96} -843.203 q^{97} -4477.52 q^{98} +355.664 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 94 q + 19 q^{2} + 282 q^{3} + 409 q^{4} + 84 q^{5} + 57 q^{6} + 39 q^{7} + 228 q^{8} + 846 q^{9} + 145 q^{10} + 357 q^{11} + 1227 q^{12} + 271 q^{13} + 366 q^{14} + 252 q^{15} + 1865 q^{16} + 690 q^{17}+ \cdots + 3213 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.02302 −1.77591 −0.887954 0.459933i \(-0.847873\pi\)
−0.887954 + 0.459933i \(0.847873\pi\)
\(3\) 3.00000 0.577350
\(4\) 17.2308 2.15385
\(5\) −13.6796 −1.22354 −0.611771 0.791035i \(-0.709543\pi\)
−0.611771 + 0.791035i \(0.709543\pi\)
\(6\) −15.0691 −1.02532
\(7\) −35.1340 −1.89706 −0.948529 0.316689i \(-0.897429\pi\)
−0.948529 + 0.316689i \(0.897429\pi\)
\(8\) −46.3664 −2.04912
\(9\) 9.00000 0.333333
\(10\) 68.7130 2.17290
\(11\) 39.5183 1.08320 0.541600 0.840636i \(-0.317819\pi\)
0.541600 + 0.840636i \(0.317819\pi\)
\(12\) 51.6923 1.24352
\(13\) 28.5863 0.609878 0.304939 0.952372i \(-0.401364\pi\)
0.304939 + 0.952372i \(0.401364\pi\)
\(14\) 176.479 3.36900
\(15\) −41.0388 −0.706412
\(16\) 95.0532 1.48521
\(17\) −121.549 −1.73411 −0.867056 0.498210i \(-0.833991\pi\)
−0.867056 + 0.498210i \(0.833991\pi\)
\(18\) −45.2072 −0.591969
\(19\) 21.0701 0.254411 0.127206 0.991876i \(-0.459399\pi\)
0.127206 + 0.991876i \(0.459399\pi\)
\(20\) −235.710 −2.63532
\(21\) −105.402 −1.09527
\(22\) −198.501 −1.92366
\(23\) 179.013 1.62291 0.811453 0.584417i \(-0.198677\pi\)
0.811453 + 0.584417i \(0.198677\pi\)
\(24\) −139.099 −1.18306
\(25\) 62.1318 0.497055
\(26\) −143.590 −1.08309
\(27\) 27.0000 0.192450
\(28\) −605.386 −4.08597
\(29\) 128.363 0.821945 0.410972 0.911648i \(-0.365189\pi\)
0.410972 + 0.911648i \(0.365189\pi\)
\(30\) 206.139 1.25452
\(31\) 146.982 0.851575 0.425787 0.904823i \(-0.359997\pi\)
0.425787 + 0.904823i \(0.359997\pi\)
\(32\) −106.523 −0.588464
\(33\) 118.555 0.625386
\(34\) 610.542 3.07962
\(35\) 480.620 2.32113
\(36\) 155.077 0.717949
\(37\) −227.825 −1.01228 −0.506139 0.862452i \(-0.668928\pi\)
−0.506139 + 0.862452i \(0.668928\pi\)
\(38\) −105.836 −0.451810
\(39\) 85.7590 0.352113
\(40\) 634.274 2.50719
\(41\) −217.840 −0.829777 −0.414888 0.909872i \(-0.636179\pi\)
−0.414888 + 0.909872i \(0.636179\pi\)
\(42\) 529.437 1.94509
\(43\) −387.632 −1.37473 −0.687364 0.726313i \(-0.741232\pi\)
−0.687364 + 0.726313i \(0.741232\pi\)
\(44\) 680.930 2.33305
\(45\) −123.117 −0.407847
\(46\) −899.188 −2.88213
\(47\) −305.512 −0.948160 −0.474080 0.880482i \(-0.657219\pi\)
−0.474080 + 0.880482i \(0.657219\pi\)
\(48\) 285.159 0.857484
\(49\) 891.400 2.59883
\(50\) −312.090 −0.882723
\(51\) −364.646 −1.00119
\(52\) 492.564 1.31358
\(53\) −413.534 −1.07176 −0.535880 0.844294i \(-0.680020\pi\)
−0.535880 + 0.844294i \(0.680020\pi\)
\(54\) −135.622 −0.341773
\(55\) −540.595 −1.32534
\(56\) 1629.04 3.88731
\(57\) 63.2103 0.146884
\(58\) −644.770 −1.45970
\(59\) 841.542 1.85694 0.928470 0.371408i \(-0.121125\pi\)
0.928470 + 0.371408i \(0.121125\pi\)
\(60\) −707.131 −1.52150
\(61\) −621.544 −1.30460 −0.652300 0.757961i \(-0.726196\pi\)
−0.652300 + 0.757961i \(0.726196\pi\)
\(62\) −738.296 −1.51232
\(63\) −316.206 −0.632353
\(64\) −225.356 −0.440148
\(65\) −391.050 −0.746212
\(66\) −595.504 −1.11063
\(67\) −678.618 −1.23741 −0.618704 0.785624i \(-0.712342\pi\)
−0.618704 + 0.785624i \(0.712342\pi\)
\(68\) −2094.38 −3.73501
\(69\) 537.040 0.936985
\(70\) −2414.16 −4.12211
\(71\) 214.078 0.357836 0.178918 0.983864i \(-0.442740\pi\)
0.178918 + 0.983864i \(0.442740\pi\)
\(72\) −417.297 −0.683041
\(73\) −957.035 −1.53442 −0.767209 0.641397i \(-0.778355\pi\)
−0.767209 + 0.641397i \(0.778355\pi\)
\(74\) 1144.37 1.79771
\(75\) 186.395 0.286975
\(76\) 363.054 0.547962
\(77\) −1388.44 −2.05490
\(78\) −430.769 −0.625321
\(79\) −929.253 −1.32341 −0.661703 0.749766i \(-0.730166\pi\)
−0.661703 + 0.749766i \(0.730166\pi\)
\(80\) −1300.29 −1.81721
\(81\) 81.0000 0.111111
\(82\) 1094.21 1.47361
\(83\) −512.188 −0.677348 −0.338674 0.940904i \(-0.609978\pi\)
−0.338674 + 0.940904i \(0.609978\pi\)
\(84\) −1816.16 −2.35904
\(85\) 1662.74 2.12176
\(86\) 1947.08 2.44139
\(87\) 385.089 0.474550
\(88\) −1832.32 −2.21961
\(89\) 1022.01 1.21722 0.608609 0.793470i \(-0.291728\pi\)
0.608609 + 0.793470i \(0.291728\pi\)
\(90\) 618.417 0.724299
\(91\) −1004.35 −1.15698
\(92\) 3084.54 3.49549
\(93\) 440.947 0.491657
\(94\) 1534.59 1.68384
\(95\) −288.231 −0.311283
\(96\) −319.570 −0.339750
\(97\) −843.203 −0.882622 −0.441311 0.897354i \(-0.645486\pi\)
−0.441311 + 0.897354i \(0.645486\pi\)
\(98\) −4477.52 −4.61529
\(99\) 355.664 0.361067
\(100\) 1070.58 1.07058
\(101\) −1860.27 −1.83271 −0.916356 0.400363i \(-0.868884\pi\)
−0.916356 + 0.400363i \(0.868884\pi\)
\(102\) 1831.63 1.77802
\(103\) 856.183 0.819050 0.409525 0.912299i \(-0.365694\pi\)
0.409525 + 0.912299i \(0.365694\pi\)
\(104\) −1325.44 −1.24972
\(105\) 1441.86 1.34011
\(106\) 2077.19 1.90335
\(107\) −717.404 −0.648169 −0.324084 0.946028i \(-0.605056\pi\)
−0.324084 + 0.946028i \(0.605056\pi\)
\(108\) 465.231 0.414508
\(109\) 573.161 0.503659 0.251830 0.967772i \(-0.418968\pi\)
0.251830 + 0.967772i \(0.418968\pi\)
\(110\) 2715.42 2.35368
\(111\) −683.476 −0.584439
\(112\) −3339.60 −2.81752
\(113\) −147.383 −0.122696 −0.0613478 0.998116i \(-0.519540\pi\)
−0.0613478 + 0.998116i \(0.519540\pi\)
\(114\) −317.507 −0.260853
\(115\) −2448.83 −1.98569
\(116\) 2211.79 1.77034
\(117\) 257.277 0.203293
\(118\) −4227.09 −3.29775
\(119\) 4270.50 3.28971
\(120\) 1902.82 1.44753
\(121\) 230.693 0.173323
\(122\) 3122.03 2.31685
\(123\) −653.519 −0.479072
\(124\) 2532.62 1.83416
\(125\) 860.012 0.615375
\(126\) 1588.31 1.12300
\(127\) 2010.20 1.40454 0.702268 0.711912i \(-0.252171\pi\)
0.702268 + 0.711912i \(0.252171\pi\)
\(128\) 1984.15 1.37013
\(129\) −1162.90 −0.793700
\(130\) 1964.25 1.32520
\(131\) 1009.32 0.673164 0.336582 0.941654i \(-0.390729\pi\)
0.336582 + 0.941654i \(0.390729\pi\)
\(132\) 2042.79 1.34699
\(133\) −740.277 −0.482633
\(134\) 3408.71 2.19752
\(135\) −369.350 −0.235471
\(136\) 5635.77 3.55341
\(137\) 244.928 0.152742 0.0763708 0.997079i \(-0.475667\pi\)
0.0763708 + 0.997079i \(0.475667\pi\)
\(138\) −2697.56 −1.66400
\(139\) 2209.52 1.34826 0.674132 0.738611i \(-0.264518\pi\)
0.674132 + 0.738611i \(0.264518\pi\)
\(140\) 8281.45 4.99936
\(141\) −916.537 −0.547421
\(142\) −1075.32 −0.635483
\(143\) 1129.68 0.660621
\(144\) 855.478 0.495069
\(145\) −1755.96 −1.00568
\(146\) 4807.21 2.72498
\(147\) 2674.20 1.50044
\(148\) −3925.61 −2.18029
\(149\) −2566.77 −1.41126 −0.705630 0.708580i \(-0.749336\pi\)
−0.705630 + 0.708580i \(0.749336\pi\)
\(150\) −936.269 −0.509640
\(151\) −1945.08 −1.04827 −0.524134 0.851636i \(-0.675611\pi\)
−0.524134 + 0.851636i \(0.675611\pi\)
\(152\) −976.943 −0.521320
\(153\) −1093.94 −0.578037
\(154\) 6974.14 3.64930
\(155\) −2010.66 −1.04194
\(156\) 1477.69 0.758398
\(157\) 759.735 0.386200 0.193100 0.981179i \(-0.438146\pi\)
0.193100 + 0.981179i \(0.438146\pi\)
\(158\) 4667.66 2.35025
\(159\) −1240.60 −0.618781
\(160\) 1457.20 0.720011
\(161\) −6289.46 −3.07875
\(162\) −406.865 −0.197323
\(163\) −420.898 −0.202253 −0.101127 0.994874i \(-0.532245\pi\)
−0.101127 + 0.994874i \(0.532245\pi\)
\(164\) −3753.55 −1.78721
\(165\) −1621.78 −0.765186
\(166\) 2572.73 1.20291
\(167\) 3566.39 1.65255 0.826275 0.563268i \(-0.190456\pi\)
0.826275 + 0.563268i \(0.190456\pi\)
\(168\) 4887.11 2.24434
\(169\) −1379.82 −0.628048
\(170\) −8351.98 −3.76805
\(171\) 189.631 0.0848037
\(172\) −6679.19 −2.96095
\(173\) 1557.93 0.684668 0.342334 0.939578i \(-0.388783\pi\)
0.342334 + 0.939578i \(0.388783\pi\)
\(174\) −1934.31 −0.842757
\(175\) −2182.94 −0.942942
\(176\) 3756.34 1.60878
\(177\) 2524.63 1.07210
\(178\) −5133.56 −2.16167
\(179\) 1292.23 0.539586 0.269793 0.962918i \(-0.413045\pi\)
0.269793 + 0.962918i \(0.413045\pi\)
\(180\) −2121.39 −0.878440
\(181\) −1086.68 −0.446257 −0.223128 0.974789i \(-0.571627\pi\)
−0.223128 + 0.974789i \(0.571627\pi\)
\(182\) 5044.89 2.05468
\(183\) −1864.63 −0.753211
\(184\) −8300.19 −3.32553
\(185\) 3116.56 1.23856
\(186\) −2214.89 −0.873137
\(187\) −4803.40 −1.87839
\(188\) −5264.21 −2.04219
\(189\) −948.619 −0.365089
\(190\) 1447.79 0.552809
\(191\) 1060.79 0.401863 0.200931 0.979605i \(-0.435603\pi\)
0.200931 + 0.979605i \(0.435603\pi\)
\(192\) −676.067 −0.254119
\(193\) −1048.70 −0.391125 −0.195563 0.980691i \(-0.562653\pi\)
−0.195563 + 0.980691i \(0.562653\pi\)
\(194\) 4235.43 1.56745
\(195\) −1173.15 −0.430826
\(196\) 15359.5 5.59748
\(197\) −3991.44 −1.44354 −0.721772 0.692131i \(-0.756672\pi\)
−0.721772 + 0.692131i \(0.756672\pi\)
\(198\) −1786.51 −0.641221
\(199\) −468.207 −0.166786 −0.0833928 0.996517i \(-0.526576\pi\)
−0.0833928 + 0.996517i \(0.526576\pi\)
\(200\) −2880.83 −1.01853
\(201\) −2035.85 −0.714418
\(202\) 9344.19 3.25473
\(203\) −4509.91 −1.55928
\(204\) −6283.14 −2.15641
\(205\) 2979.96 1.01527
\(206\) −4300.63 −1.45456
\(207\) 1611.12 0.540969
\(208\) 2717.22 0.905795
\(209\) 832.653 0.275578
\(210\) −7242.49 −2.37990
\(211\) 840.716 0.274300 0.137150 0.990550i \(-0.456206\pi\)
0.137150 + 0.990550i \(0.456206\pi\)
\(212\) −7125.51 −2.30840
\(213\) 642.233 0.206597
\(214\) 3603.54 1.15109
\(215\) 5302.65 1.68204
\(216\) −1251.89 −0.394354
\(217\) −5164.08 −1.61549
\(218\) −2879.00 −0.894452
\(219\) −2871.11 −0.885897
\(220\) −9314.86 −2.85458
\(221\) −3474.63 −1.05760
\(222\) 3433.12 1.03791
\(223\) 525.454 0.157789 0.0788946 0.996883i \(-0.474861\pi\)
0.0788946 + 0.996883i \(0.474861\pi\)
\(224\) 3742.60 1.11635
\(225\) 559.186 0.165685
\(226\) 740.307 0.217896
\(227\) −1168.28 −0.341592 −0.170796 0.985306i \(-0.554634\pi\)
−0.170796 + 0.985306i \(0.554634\pi\)
\(228\) 1089.16 0.316366
\(229\) −3670.58 −1.05921 −0.529604 0.848245i \(-0.677660\pi\)
−0.529604 + 0.848245i \(0.677660\pi\)
\(230\) 12300.5 3.52641
\(231\) −4165.31 −1.18639
\(232\) −5951.72 −1.68427
\(233\) 5409.09 1.52086 0.760432 0.649417i \(-0.224987\pi\)
0.760432 + 0.649417i \(0.224987\pi\)
\(234\) −1292.31 −0.361029
\(235\) 4179.29 1.16011
\(236\) 14500.4 3.99956
\(237\) −2787.76 −0.764069
\(238\) −21450.8 −5.84222
\(239\) 4157.55 1.12523 0.562615 0.826719i \(-0.309796\pi\)
0.562615 + 0.826719i \(0.309796\pi\)
\(240\) −3900.87 −1.04917
\(241\) −1184.55 −0.316613 −0.158306 0.987390i \(-0.550603\pi\)
−0.158306 + 0.987390i \(0.550603\pi\)
\(242\) −1158.78 −0.307806
\(243\) 243.000 0.0641500
\(244\) −10709.7 −2.80991
\(245\) −12194.0 −3.17978
\(246\) 3282.64 0.850787
\(247\) 602.316 0.155160
\(248\) −6815.04 −1.74498
\(249\) −1536.56 −0.391067
\(250\) −4319.86 −1.09285
\(251\) 4252.19 1.06930 0.534652 0.845072i \(-0.320443\pi\)
0.534652 + 0.845072i \(0.320443\pi\)
\(252\) −5448.48 −1.36199
\(253\) 7074.29 1.75793
\(254\) −10097.3 −2.49433
\(255\) 4988.22 1.22500
\(256\) −8163.61 −1.99307
\(257\) 5913.74 1.43537 0.717683 0.696370i \(-0.245203\pi\)
0.717683 + 0.696370i \(0.245203\pi\)
\(258\) 5841.25 1.40954
\(259\) 8004.42 1.92035
\(260\) −6738.09 −1.60722
\(261\) 1155.27 0.273982
\(262\) −5069.83 −1.19548
\(263\) 7182.35 1.68396 0.841982 0.539506i \(-0.181389\pi\)
0.841982 + 0.539506i \(0.181389\pi\)
\(264\) −5496.95 −1.28149
\(265\) 5656.98 1.31134
\(266\) 3718.43 0.857111
\(267\) 3066.02 0.702761
\(268\) −11693.1 −2.66519
\(269\) −5560.07 −1.26023 −0.630117 0.776500i \(-0.716993\pi\)
−0.630117 + 0.776500i \(0.716993\pi\)
\(270\) 1855.25 0.418174
\(271\) −8386.94 −1.87996 −0.939982 0.341224i \(-0.889159\pi\)
−0.939982 + 0.341224i \(0.889159\pi\)
\(272\) −11553.6 −2.57551
\(273\) −3013.06 −0.667980
\(274\) −1230.28 −0.271255
\(275\) 2455.34 0.538410
\(276\) 9253.61 2.01812
\(277\) 697.310 0.151254 0.0756269 0.997136i \(-0.475904\pi\)
0.0756269 + 0.997136i \(0.475904\pi\)
\(278\) −11098.4 −2.39439
\(279\) 1322.84 0.283858
\(280\) −22284.6 −4.75628
\(281\) −6862.24 −1.45682 −0.728411 0.685141i \(-0.759741\pi\)
−0.728411 + 0.685141i \(0.759741\pi\)
\(282\) 4603.78 0.972168
\(283\) 5711.51 1.19970 0.599848 0.800114i \(-0.295228\pi\)
0.599848 + 0.800114i \(0.295228\pi\)
\(284\) 3688.72 0.770724
\(285\) −864.692 −0.179719
\(286\) −5674.42 −1.17320
\(287\) 7653.59 1.57414
\(288\) −958.711 −0.196155
\(289\) 9861.11 2.00715
\(290\) 8820.21 1.78600
\(291\) −2529.61 −0.509582
\(292\) −16490.4 −3.30490
\(293\) 3196.02 0.637248 0.318624 0.947881i \(-0.396779\pi\)
0.318624 + 0.947881i \(0.396779\pi\)
\(294\) −13432.6 −2.66464
\(295\) −11512.0 −2.27204
\(296\) 10563.4 2.07428
\(297\) 1066.99 0.208462
\(298\) 12892.9 2.50627
\(299\) 5117.33 0.989775
\(300\) 3211.74 0.618099
\(301\) 13619.1 2.60794
\(302\) 9770.19 1.86163
\(303\) −5580.82 −1.05812
\(304\) 2002.78 0.377853
\(305\) 8502.48 1.59623
\(306\) 5494.88 1.02654
\(307\) −670.861 −0.124717 −0.0623584 0.998054i \(-0.519862\pi\)
−0.0623584 + 0.998054i \(0.519862\pi\)
\(308\) −23923.8 −4.42593
\(309\) 2568.55 0.472879
\(310\) 10099.6 1.85038
\(311\) 5484.95 1.00007 0.500037 0.866004i \(-0.333320\pi\)
0.500037 + 0.866004i \(0.333320\pi\)
\(312\) −3976.33 −0.721524
\(313\) 1932.50 0.348982 0.174491 0.984659i \(-0.444172\pi\)
0.174491 + 0.984659i \(0.444172\pi\)
\(314\) −3816.17 −0.685856
\(315\) 4325.58 0.773710
\(316\) −16011.7 −2.85041
\(317\) −3839.23 −0.680229 −0.340115 0.940384i \(-0.610466\pi\)
−0.340115 + 0.940384i \(0.610466\pi\)
\(318\) 6231.57 1.09890
\(319\) 5072.68 0.890331
\(320\) 3082.78 0.538539
\(321\) −2152.21 −0.374220
\(322\) 31592.1 5.46757
\(323\) −2561.04 −0.441177
\(324\) 1395.69 0.239316
\(325\) 1776.12 0.303143
\(326\) 2114.18 0.359183
\(327\) 1719.48 0.290788
\(328\) 10100.4 1.70031
\(329\) 10733.9 1.79872
\(330\) 8146.26 1.35890
\(331\) −2303.25 −0.382471 −0.191235 0.981544i \(-0.561249\pi\)
−0.191235 + 0.981544i \(0.561249\pi\)
\(332\) −8825.39 −1.45890
\(333\) −2050.43 −0.337426
\(334\) −17914.1 −2.93477
\(335\) 9283.23 1.51402
\(336\) −10018.8 −1.62670
\(337\) −6869.41 −1.11039 −0.555194 0.831721i \(-0.687356\pi\)
−0.555194 + 0.831721i \(0.687356\pi\)
\(338\) 6930.88 1.11536
\(339\) −442.148 −0.0708383
\(340\) 28650.3 4.56994
\(341\) 5808.49 0.922426
\(342\) −952.520 −0.150603
\(343\) −19267.5 −3.03308
\(344\) 17973.1 2.81699
\(345\) −7346.50 −1.14644
\(346\) −7825.54 −1.21591
\(347\) 1038.15 0.160608 0.0803040 0.996770i \(-0.474411\pi\)
0.0803040 + 0.996770i \(0.474411\pi\)
\(348\) 6635.38 1.02211
\(349\) 41.3402 0.00634065 0.00317033 0.999995i \(-0.498991\pi\)
0.00317033 + 0.999995i \(0.498991\pi\)
\(350\) 10965.0 1.67458
\(351\) 771.831 0.117371
\(352\) −4209.62 −0.637425
\(353\) −1492.44 −0.225027 −0.112513 0.993650i \(-0.535890\pi\)
−0.112513 + 0.993650i \(0.535890\pi\)
\(354\) −12681.3 −1.90396
\(355\) −2928.50 −0.437827
\(356\) 17609.9 2.62170
\(357\) 12811.5 1.89932
\(358\) −6490.91 −0.958254
\(359\) −8053.14 −1.18392 −0.591962 0.805966i \(-0.701646\pi\)
−0.591962 + 0.805966i \(0.701646\pi\)
\(360\) 5708.46 0.835729
\(361\) −6415.05 −0.935275
\(362\) 5458.43 0.792511
\(363\) 692.079 0.100068
\(364\) −17305.8 −2.49195
\(365\) 13091.9 1.87742
\(366\) 9366.09 1.33763
\(367\) 1698.14 0.241531 0.120766 0.992681i \(-0.461465\pi\)
0.120766 + 0.992681i \(0.461465\pi\)
\(368\) 17015.8 2.41035
\(369\) −1960.56 −0.276592
\(370\) −15654.6 −2.19957
\(371\) 14529.1 2.03319
\(372\) 7597.86 1.05895
\(373\) 374.355 0.0519662 0.0259831 0.999662i \(-0.491728\pi\)
0.0259831 + 0.999662i \(0.491728\pi\)
\(374\) 24127.6 3.33585
\(375\) 2580.04 0.355287
\(376\) 14165.5 1.94290
\(377\) 3669.43 0.501286
\(378\) 4764.93 0.648364
\(379\) 11871.4 1.60896 0.804478 0.593982i \(-0.202445\pi\)
0.804478 + 0.593982i \(0.202445\pi\)
\(380\) −4966.44 −0.670455
\(381\) 6030.59 0.810910
\(382\) −5328.35 −0.713671
\(383\) −10227.5 −1.36449 −0.682246 0.731123i \(-0.738997\pi\)
−0.682246 + 0.731123i \(0.738997\pi\)
\(384\) 5952.46 0.791042
\(385\) 18993.3 2.51425
\(386\) 5267.65 0.694602
\(387\) −3488.69 −0.458243
\(388\) −14529.0 −1.90103
\(389\) 265.791 0.0346431 0.0173215 0.999850i \(-0.494486\pi\)
0.0173215 + 0.999850i \(0.494486\pi\)
\(390\) 5892.76 0.765106
\(391\) −21758.8 −2.81430
\(392\) −41330.9 −5.32533
\(393\) 3027.95 0.388652
\(394\) 20049.1 2.56360
\(395\) 12711.8 1.61924
\(396\) 6128.37 0.777682
\(397\) −8625.59 −1.09044 −0.545222 0.838292i \(-0.683554\pi\)
−0.545222 + 0.838292i \(0.683554\pi\)
\(398\) 2351.82 0.296196
\(399\) −2220.83 −0.278648
\(400\) 5905.83 0.738228
\(401\) 5980.54 0.744772 0.372386 0.928078i \(-0.378540\pi\)
0.372386 + 0.928078i \(0.378540\pi\)
\(402\) 10226.1 1.26874
\(403\) 4201.69 0.519357
\(404\) −32053.9 −3.94738
\(405\) −1108.05 −0.135949
\(406\) 22653.4 2.76913
\(407\) −9003.26 −1.09650
\(408\) 16907.3 2.05156
\(409\) −2777.63 −0.335807 −0.167904 0.985803i \(-0.553700\pi\)
−0.167904 + 0.985803i \(0.553700\pi\)
\(410\) −14968.4 −1.80302
\(411\) 734.783 0.0881854
\(412\) 14752.7 1.76411
\(413\) −29566.8 −3.52272
\(414\) −8092.69 −0.960710
\(415\) 7006.53 0.828764
\(416\) −3045.11 −0.358892
\(417\) 6628.55 0.778420
\(418\) −4182.44 −0.489401
\(419\) 1036.64 0.120867 0.0604335 0.998172i \(-0.480752\pi\)
0.0604335 + 0.998172i \(0.480752\pi\)
\(420\) 24844.3 2.88638
\(421\) −2048.46 −0.237140 −0.118570 0.992946i \(-0.537831\pi\)
−0.118570 + 0.992946i \(0.537831\pi\)
\(422\) −4222.93 −0.487131
\(423\) −2749.61 −0.316053
\(424\) 19174.1 2.19617
\(425\) −7552.05 −0.861948
\(426\) −3225.95 −0.366897
\(427\) 21837.3 2.47490
\(428\) −12361.4 −1.39606
\(429\) 3389.05 0.381409
\(430\) −26635.4 −2.98714
\(431\) 9103.53 1.01741 0.508703 0.860942i \(-0.330125\pi\)
0.508703 + 0.860942i \(0.330125\pi\)
\(432\) 2566.44 0.285828
\(433\) 16112.2 1.78823 0.894117 0.447834i \(-0.147804\pi\)
0.894117 + 0.447834i \(0.147804\pi\)
\(434\) 25939.3 2.86896
\(435\) −5267.87 −0.580632
\(436\) 9876.00 1.08480
\(437\) 3771.83 0.412885
\(438\) 14421.6 1.57327
\(439\) −430.018 −0.0467509 −0.0233754 0.999727i \(-0.507441\pi\)
−0.0233754 + 0.999727i \(0.507441\pi\)
\(440\) 25065.4 2.71579
\(441\) 8022.60 0.866278
\(442\) 17453.2 1.87820
\(443\) 5492.74 0.589092 0.294546 0.955637i \(-0.404832\pi\)
0.294546 + 0.955637i \(0.404832\pi\)
\(444\) −11776.8 −1.25879
\(445\) −13980.6 −1.48932
\(446\) −2639.37 −0.280219
\(447\) −7700.31 −0.814792
\(448\) 7917.65 0.834986
\(449\) 3121.35 0.328075 0.164038 0.986454i \(-0.447548\pi\)
0.164038 + 0.986454i \(0.447548\pi\)
\(450\) −2808.81 −0.294241
\(451\) −8608.65 −0.898815
\(452\) −2539.52 −0.264267
\(453\) −5835.24 −0.605218
\(454\) 5868.28 0.606635
\(455\) 13739.2 1.41561
\(456\) −2930.83 −0.300984
\(457\) 9882.44 1.01156 0.505778 0.862664i \(-0.331206\pi\)
0.505778 + 0.862664i \(0.331206\pi\)
\(458\) 18437.4 1.88106
\(459\) −3281.82 −0.333730
\(460\) −42195.3 −4.27688
\(461\) −1333.73 −0.134747 −0.0673734 0.997728i \(-0.521462\pi\)
−0.0673734 + 0.997728i \(0.521462\pi\)
\(462\) 20922.4 2.10693
\(463\) 17592.2 1.76583 0.882917 0.469530i \(-0.155577\pi\)
0.882917 + 0.469530i \(0.155577\pi\)
\(464\) 12201.3 1.22076
\(465\) −6031.99 −0.601563
\(466\) −27170.0 −2.70091
\(467\) −16369.2 −1.62201 −0.811004 0.585040i \(-0.801079\pi\)
−0.811004 + 0.585040i \(0.801079\pi\)
\(468\) 4433.08 0.437861
\(469\) 23842.6 2.34744
\(470\) −20992.7 −2.06025
\(471\) 2279.20 0.222973
\(472\) −39019.2 −3.80510
\(473\) −15318.5 −1.48911
\(474\) 14003.0 1.35692
\(475\) 1309.12 0.126456
\(476\) 73583.9 7.08553
\(477\) −3721.81 −0.357253
\(478\) −20883.5 −1.99830
\(479\) −308.753 −0.0294515 −0.0147258 0.999892i \(-0.504688\pi\)
−0.0147258 + 0.999892i \(0.504688\pi\)
\(480\) 4371.60 0.415698
\(481\) −6512.69 −0.617366
\(482\) 5950.03 0.562274
\(483\) −18868.4 −1.77752
\(484\) 3975.02 0.373311
\(485\) 11534.7 1.07992
\(486\) −1220.59 −0.113924
\(487\) −3782.62 −0.351965 −0.175983 0.984393i \(-0.556310\pi\)
−0.175983 + 0.984393i \(0.556310\pi\)
\(488\) 28818.7 2.67328
\(489\) −1262.69 −0.116771
\(490\) 61250.8 5.64699
\(491\) −15470.1 −1.42190 −0.710951 0.703242i \(-0.751735\pi\)
−0.710951 + 0.703242i \(0.751735\pi\)
\(492\) −11260.6 −1.03185
\(493\) −15602.4 −1.42534
\(494\) −3025.45 −0.275549
\(495\) −4865.35 −0.441780
\(496\) 13971.1 1.26476
\(497\) −7521.41 −0.678836
\(498\) 7718.19 0.694499
\(499\) 21633.4 1.94077 0.970384 0.241567i \(-0.0776614\pi\)
0.970384 + 0.241567i \(0.0776614\pi\)
\(500\) 14818.7 1.32542
\(501\) 10699.2 0.954100
\(502\) −21358.8 −1.89899
\(503\) 12611.3 1.11791 0.558957 0.829197i \(-0.311202\pi\)
0.558957 + 0.829197i \(0.311202\pi\)
\(504\) 14661.3 1.29577
\(505\) 25447.8 2.24240
\(506\) −35534.3 −3.12193
\(507\) −4139.47 −0.362604
\(508\) 34637.2 3.02516
\(509\) −19163.1 −1.66874 −0.834372 0.551202i \(-0.814169\pi\)
−0.834372 + 0.551202i \(0.814169\pi\)
\(510\) −25056.0 −2.17548
\(511\) 33624.5 2.91088
\(512\) 25132.8 2.16938
\(513\) 568.892 0.0489614
\(514\) −29704.9 −2.54908
\(515\) −11712.2 −1.00214
\(516\) −20037.6 −1.70951
\(517\) −12073.3 −1.02705
\(518\) −40206.4 −3.41036
\(519\) 4673.80 0.395293
\(520\) 18131.6 1.52908
\(521\) 5977.48 0.502646 0.251323 0.967903i \(-0.419134\pi\)
0.251323 + 0.967903i \(0.419134\pi\)
\(522\) −5802.93 −0.486566
\(523\) 7631.42 0.638047 0.319024 0.947747i \(-0.396645\pi\)
0.319024 + 0.947747i \(0.396645\pi\)
\(524\) 17391.3 1.44989
\(525\) −6548.82 −0.544408
\(526\) −36077.1 −2.99056
\(527\) −17865.5 −1.47673
\(528\) 11269.0 0.928827
\(529\) 19878.7 1.63382
\(530\) −28415.2 −2.32882
\(531\) 7573.88 0.618980
\(532\) −12755.5 −1.03952
\(533\) −6227.24 −0.506063
\(534\) −15400.7 −1.24804
\(535\) 9813.81 0.793061
\(536\) 31465.0 2.53560
\(537\) 3876.69 0.311530
\(538\) 27928.3 2.23806
\(539\) 35226.6 2.81506
\(540\) −6364.18 −0.507168
\(541\) −23027.9 −1.83003 −0.915017 0.403415i \(-0.867823\pi\)
−0.915017 + 0.403415i \(0.867823\pi\)
\(542\) 42127.8 3.33864
\(543\) −3260.05 −0.257646
\(544\) 12947.8 1.02046
\(545\) −7840.62 −0.616248
\(546\) 15134.7 1.18627
\(547\) 2685.90 0.209947 0.104973 0.994475i \(-0.466524\pi\)
0.104973 + 0.994475i \(0.466524\pi\)
\(548\) 4220.29 0.328982
\(549\) −5593.90 −0.434866
\(550\) −12333.2 −0.956166
\(551\) 2704.62 0.209112
\(552\) −24900.6 −1.92000
\(553\) 32648.4 2.51058
\(554\) −3502.61 −0.268613
\(555\) 9349.69 0.715085
\(556\) 38071.6 2.90395
\(557\) 20746.5 1.57820 0.789098 0.614267i \(-0.210548\pi\)
0.789098 + 0.614267i \(0.210548\pi\)
\(558\) −6644.67 −0.504106
\(559\) −11081.0 −0.838417
\(560\) 45684.4 3.44736
\(561\) −14410.2 −1.08449
\(562\) 34469.2 2.58718
\(563\) 17635.0 1.32012 0.660058 0.751215i \(-0.270532\pi\)
0.660058 + 0.751215i \(0.270532\pi\)
\(564\) −15792.6 −1.17906
\(565\) 2016.14 0.150123
\(566\) −28689.0 −2.13055
\(567\) −2845.86 −0.210784
\(568\) −9926.01 −0.733250
\(569\) 3218.21 0.237108 0.118554 0.992948i \(-0.462174\pi\)
0.118554 + 0.992948i \(0.462174\pi\)
\(570\) 4343.37 0.319164
\(571\) 11028.2 0.808258 0.404129 0.914702i \(-0.367575\pi\)
0.404129 + 0.914702i \(0.367575\pi\)
\(572\) 19465.3 1.42287
\(573\) 3182.36 0.232016
\(574\) −38444.1 −2.79552
\(575\) 11122.4 0.806673
\(576\) −2028.20 −0.146716
\(577\) 12569.6 0.906896 0.453448 0.891283i \(-0.350194\pi\)
0.453448 + 0.891283i \(0.350194\pi\)
\(578\) −49532.6 −3.56450
\(579\) −3146.10 −0.225816
\(580\) −30256.5 −2.16609
\(581\) 17995.2 1.28497
\(582\) 12706.3 0.904970
\(583\) −16342.1 −1.16093
\(584\) 44374.2 3.14421
\(585\) −3519.45 −0.248737
\(586\) −16053.7 −1.13169
\(587\) −17324.0 −1.21813 −0.609063 0.793122i \(-0.708454\pi\)
−0.609063 + 0.793122i \(0.708454\pi\)
\(588\) 46078.5 3.23171
\(589\) 3096.93 0.216650
\(590\) 57824.9 4.03494
\(591\) −11974.3 −0.833431
\(592\) −21655.5 −1.50344
\(593\) 23303.3 1.61375 0.806873 0.590725i \(-0.201158\pi\)
0.806873 + 0.590725i \(0.201158\pi\)
\(594\) −5359.53 −0.370209
\(595\) −58418.8 −4.02510
\(596\) −44227.4 −3.03964
\(597\) −1404.62 −0.0962937
\(598\) −25704.5 −1.75775
\(599\) 20359.4 1.38876 0.694378 0.719611i \(-0.255680\pi\)
0.694378 + 0.719611i \(0.255680\pi\)
\(600\) −8642.48 −0.588046
\(601\) 18186.7 1.23436 0.617180 0.786822i \(-0.288275\pi\)
0.617180 + 0.786822i \(0.288275\pi\)
\(602\) −68408.9 −4.63146
\(603\) −6107.56 −0.412469
\(604\) −33515.2 −2.25781
\(605\) −3155.79 −0.212068
\(606\) 28032.6 1.87912
\(607\) −12618.8 −0.843794 −0.421897 0.906644i \(-0.638636\pi\)
−0.421897 + 0.906644i \(0.638636\pi\)
\(608\) −2244.46 −0.149712
\(609\) −13529.7 −0.900250
\(610\) −42708.2 −2.83476
\(611\) −8733.47 −0.578262
\(612\) −18849.4 −1.24500
\(613\) 15966.7 1.05202 0.526011 0.850477i \(-0.323687\pi\)
0.526011 + 0.850477i \(0.323687\pi\)
\(614\) 3369.75 0.221485
\(615\) 8939.89 0.586164
\(616\) 64376.7 4.21073
\(617\) −27282.4 −1.78015 −0.890073 0.455818i \(-0.849347\pi\)
−0.890073 + 0.455818i \(0.849347\pi\)
\(618\) −12901.9 −0.839789
\(619\) −2040.53 −0.132497 −0.0662486 0.997803i \(-0.521103\pi\)
−0.0662486 + 0.997803i \(0.521103\pi\)
\(620\) −34645.3 −2.24417
\(621\) 4833.36 0.312328
\(622\) −27551.0 −1.77604
\(623\) −35907.2 −2.30913
\(624\) 8151.66 0.522961
\(625\) −19531.1 −1.24999
\(626\) −9707.01 −0.619760
\(627\) 2497.96 0.159105
\(628\) 13090.8 0.831816
\(629\) 27691.9 1.75540
\(630\) −21727.5 −1.37404
\(631\) −654.545 −0.0412948 −0.0206474 0.999787i \(-0.506573\pi\)
−0.0206474 + 0.999787i \(0.506573\pi\)
\(632\) 43086.1 2.71182
\(633\) 2522.15 0.158367
\(634\) 19284.5 1.20802
\(635\) −27498.7 −1.71851
\(636\) −21376.5 −1.33276
\(637\) 25481.8 1.58497
\(638\) −25480.2 −1.58115
\(639\) 1926.70 0.119279
\(640\) −27142.5 −1.67641
\(641\) 20801.9 1.28179 0.640895 0.767629i \(-0.278563\pi\)
0.640895 + 0.767629i \(0.278563\pi\)
\(642\) 10810.6 0.664581
\(643\) −5244.72 −0.321667 −0.160833 0.986982i \(-0.551418\pi\)
−0.160833 + 0.986982i \(0.551418\pi\)
\(644\) −108372. −6.63115
\(645\) 15908.0 0.971125
\(646\) 12864.2 0.783490
\(647\) −452.603 −0.0275018 −0.0137509 0.999905i \(-0.504377\pi\)
−0.0137509 + 0.999905i \(0.504377\pi\)
\(648\) −3755.67 −0.227680
\(649\) 33256.3 2.01144
\(650\) −8921.49 −0.538353
\(651\) −15492.3 −0.932702
\(652\) −7252.39 −0.435622
\(653\) −14789.8 −0.886326 −0.443163 0.896441i \(-0.646144\pi\)
−0.443163 + 0.896441i \(0.646144\pi\)
\(654\) −8637.00 −0.516412
\(655\) −13807.1 −0.823645
\(656\) −20706.4 −1.23239
\(657\) −8613.32 −0.511473
\(658\) −53916.5 −3.19435
\(659\) −2318.07 −0.137025 −0.0685123 0.997650i \(-0.521825\pi\)
−0.0685123 + 0.997650i \(0.521825\pi\)
\(660\) −27944.6 −1.64809
\(661\) 22809.4 1.34218 0.671092 0.741374i \(-0.265826\pi\)
0.671092 + 0.741374i \(0.265826\pi\)
\(662\) 11569.3 0.679232
\(663\) −10423.9 −0.610604
\(664\) 23748.3 1.38797
\(665\) 10126.7 0.590521
\(666\) 10299.3 0.599237
\(667\) 22978.7 1.33394
\(668\) 61451.7 3.55934
\(669\) 1576.36 0.0910996
\(670\) −46629.9 −2.68876
\(671\) −24562.3 −1.41314
\(672\) 11227.8 0.644526
\(673\) 10705.5 0.613175 0.306587 0.951843i \(-0.400813\pi\)
0.306587 + 0.951843i \(0.400813\pi\)
\(674\) 34505.2 1.97195
\(675\) 1677.56 0.0956582
\(676\) −23775.4 −1.35272
\(677\) 677.000 0.0384331
\(678\) 2220.92 0.125802
\(679\) 29625.1 1.67439
\(680\) −77095.2 −4.34774
\(681\) −3504.83 −0.197218
\(682\) −29176.2 −1.63814
\(683\) 30935.1 1.73309 0.866544 0.499101i \(-0.166336\pi\)
0.866544 + 0.499101i \(0.166336\pi\)
\(684\) 3267.48 0.182654
\(685\) −3350.52 −0.186886
\(686\) 96781.0 5.38647
\(687\) −11011.7 −0.611534
\(688\) −36845.6 −2.04175
\(689\) −11821.4 −0.653643
\(690\) 36901.6 2.03597
\(691\) −3543.13 −0.195061 −0.0975303 0.995233i \(-0.531094\pi\)
−0.0975303 + 0.995233i \(0.531094\pi\)
\(692\) 26844.4 1.47467
\(693\) −12495.9 −0.684965
\(694\) −5214.66 −0.285225
\(695\) −30225.3 −1.64966
\(696\) −17855.2 −0.972411
\(697\) 26478.2 1.43893
\(698\) −207.653 −0.0112604
\(699\) 16227.3 0.878072
\(700\) −37613.7 −2.03095
\(701\) 4513.23 0.243170 0.121585 0.992581i \(-0.461202\pi\)
0.121585 + 0.992581i \(0.461202\pi\)
\(702\) −3876.92 −0.208440
\(703\) −4800.30 −0.257535
\(704\) −8905.66 −0.476768
\(705\) 12537.9 0.669792
\(706\) 7496.56 0.399627
\(707\) 65358.8 3.47676
\(708\) 43501.2 2.30915
\(709\) −3464.08 −0.183493 −0.0917463 0.995782i \(-0.529245\pi\)
−0.0917463 + 0.995782i \(0.529245\pi\)
\(710\) 14709.9 0.777541
\(711\) −8363.28 −0.441136
\(712\) −47386.7 −2.49423
\(713\) 26311.8 1.38203
\(714\) −64352.4 −3.37301
\(715\) −15453.6 −0.808297
\(716\) 22266.1 1.16218
\(717\) 12472.7 0.649651
\(718\) 40451.1 2.10254
\(719\) 12405.5 0.643458 0.321729 0.946832i \(-0.395736\pi\)
0.321729 + 0.946832i \(0.395736\pi\)
\(720\) −11702.6 −0.605737
\(721\) −30081.1 −1.55379
\(722\) 32223.0 1.66096
\(723\) −3553.65 −0.182796
\(724\) −18724.4 −0.961168
\(725\) 7975.42 0.408551
\(726\) −3476.33 −0.177712
\(727\) 21499.3 1.09679 0.548393 0.836220i \(-0.315240\pi\)
0.548393 + 0.836220i \(0.315240\pi\)
\(728\) 46568.2 2.37078
\(729\) 729.000 0.0370370
\(730\) −65760.8 −3.33413
\(731\) 47116.2 2.38393
\(732\) −32129.0 −1.62230
\(733\) −673.432 −0.0339342 −0.0169671 0.999856i \(-0.505401\pi\)
−0.0169671 + 0.999856i \(0.505401\pi\)
\(734\) −8529.77 −0.428937
\(735\) −36582.0 −1.83585
\(736\) −19069.1 −0.955022
\(737\) −26817.8 −1.34036
\(738\) 9847.93 0.491202
\(739\) 4945.31 0.246166 0.123083 0.992396i \(-0.460722\pi\)
0.123083 + 0.992396i \(0.460722\pi\)
\(740\) 53700.8 2.66767
\(741\) 1806.95 0.0895816
\(742\) −72980.1 −3.61076
\(743\) −34567.8 −1.70682 −0.853412 0.521236i \(-0.825471\pi\)
−0.853412 + 0.521236i \(0.825471\pi\)
\(744\) −20445.1 −1.00747
\(745\) 35112.4 1.72674
\(746\) −1880.39 −0.0922871
\(747\) −4609.69 −0.225783
\(748\) −82766.2 −4.04576
\(749\) 25205.3 1.22961
\(750\) −12959.6 −0.630956
\(751\) 23901.2 1.16134 0.580670 0.814139i \(-0.302791\pi\)
0.580670 + 0.814139i \(0.302791\pi\)
\(752\) −29039.9 −1.40821
\(753\) 12756.6 0.617363
\(754\) −18431.6 −0.890238
\(755\) 26608.0 1.28260
\(756\) −16345.4 −0.786346
\(757\) −23421.3 −1.12452 −0.562260 0.826960i \(-0.690068\pi\)
−0.562260 + 0.826960i \(0.690068\pi\)
\(758\) −59630.5 −2.85736
\(759\) 21222.9 1.01494
\(760\) 13364.2 0.637856
\(761\) −5472.56 −0.260683 −0.130342 0.991469i \(-0.541607\pi\)
−0.130342 + 0.991469i \(0.541607\pi\)
\(762\) −30291.8 −1.44010
\(763\) −20137.4 −0.955471
\(764\) 18278.2 0.865550
\(765\) 14964.7 0.707253
\(766\) 51372.9 2.42321
\(767\) 24056.6 1.13251
\(768\) −24490.8 −1.15070
\(769\) 25775.3 1.20869 0.604343 0.796724i \(-0.293436\pi\)
0.604343 + 0.796724i \(0.293436\pi\)
\(770\) −95403.6 −4.46507
\(771\) 17741.2 0.828709
\(772\) −18069.9 −0.842423
\(773\) 11151.9 0.518895 0.259447 0.965757i \(-0.416460\pi\)
0.259447 + 0.965757i \(0.416460\pi\)
\(774\) 17523.8 0.813796
\(775\) 9132.29 0.423279
\(776\) 39096.2 1.80860
\(777\) 24013.3 1.10871
\(778\) −1335.08 −0.0615228
\(779\) −4589.90 −0.211104
\(780\) −20214.3 −0.927932
\(781\) 8459.98 0.387608
\(782\) 109295. 4.99794
\(783\) 3465.80 0.158183
\(784\) 84730.3 3.85980
\(785\) −10392.9 −0.472532
\(786\) −15209.5 −0.690209
\(787\) 8228.09 0.372681 0.186340 0.982485i \(-0.440337\pi\)
0.186340 + 0.982485i \(0.440337\pi\)
\(788\) −68775.5 −3.10917
\(789\) 21547.0 0.972237
\(790\) −63851.8 −2.87563
\(791\) 5178.15 0.232761
\(792\) −16490.9 −0.739870
\(793\) −17767.7 −0.795647
\(794\) 43326.5 1.93653
\(795\) 16971.0 0.757104
\(796\) −8067.57 −0.359230
\(797\) −20295.2 −0.901998 −0.450999 0.892524i \(-0.648932\pi\)
−0.450999 + 0.892524i \(0.648932\pi\)
\(798\) 11155.3 0.494853
\(799\) 37134.6 1.64422
\(800\) −6618.49 −0.292499
\(801\) 9198.05 0.405739
\(802\) −30040.4 −1.32265
\(803\) −37820.4 −1.66208
\(804\) −35079.3 −1.53875
\(805\) 86037.3 3.76698
\(806\) −21105.2 −0.922330
\(807\) −16680.2 −0.727597
\(808\) 86254.0 3.75545
\(809\) −44551.5 −1.93615 −0.968076 0.250656i \(-0.919354\pi\)
−0.968076 + 0.250656i \(0.919354\pi\)
\(810\) 5565.75 0.241433
\(811\) 27550.4 1.19288 0.596439 0.802659i \(-0.296582\pi\)
0.596439 + 0.802659i \(0.296582\pi\)
\(812\) −77709.2 −3.35844
\(813\) −25160.8 −1.08540
\(814\) 45223.6 1.94728
\(815\) 5757.72 0.247465
\(816\) −34660.8 −1.48697
\(817\) −8167.44 −0.349746
\(818\) 13952.1 0.596362
\(819\) −9039.17 −0.385658
\(820\) 51347.0 2.18673
\(821\) 9610.08 0.408519 0.204260 0.978917i \(-0.434521\pi\)
0.204260 + 0.978917i \(0.434521\pi\)
\(822\) −3690.83 −0.156609
\(823\) 9433.23 0.399540 0.199770 0.979843i \(-0.435980\pi\)
0.199770 + 0.979843i \(0.435980\pi\)
\(824\) −39698.1 −1.67833
\(825\) 7366.02 0.310851
\(826\) 148515. 6.25603
\(827\) 22962.6 0.965524 0.482762 0.875752i \(-0.339634\pi\)
0.482762 + 0.875752i \(0.339634\pi\)
\(828\) 27760.8 1.16516
\(829\) −18119.5 −0.759126 −0.379563 0.925166i \(-0.623926\pi\)
−0.379563 + 0.925166i \(0.623926\pi\)
\(830\) −35194.0 −1.47181
\(831\) 2091.93 0.0873264
\(832\) −6442.09 −0.268437
\(833\) −108349. −4.50667
\(834\) −33295.3 −1.38240
\(835\) −48786.9 −2.02196
\(836\) 14347.3 0.593553
\(837\) 3968.53 0.163886
\(838\) −5207.08 −0.214649
\(839\) −15737.0 −0.647557 −0.323778 0.946133i \(-0.604953\pi\)
−0.323778 + 0.946133i \(0.604953\pi\)
\(840\) −66853.8 −2.74604
\(841\) −7911.95 −0.324406
\(842\) 10289.5 0.421138
\(843\) −20586.7 −0.841096
\(844\) 14486.2 0.590799
\(845\) 18875.4 0.768443
\(846\) 13811.4 0.561282
\(847\) −8105.18 −0.328804
\(848\) −39307.7 −1.59178
\(849\) 17134.5 0.692644
\(850\) 37934.1 1.53074
\(851\) −40783.8 −1.64283
\(852\) 11066.2 0.444977
\(853\) 7583.87 0.304416 0.152208 0.988348i \(-0.451362\pi\)
0.152208 + 0.988348i \(0.451362\pi\)
\(854\) −109689. −4.39520
\(855\) −2594.08 −0.103761
\(856\) 33263.4 1.32818
\(857\) 3578.03 0.142618 0.0713088 0.997454i \(-0.477282\pi\)
0.0713088 + 0.997454i \(0.477282\pi\)
\(858\) −17023.3 −0.677348
\(859\) 5155.20 0.204765 0.102383 0.994745i \(-0.467353\pi\)
0.102383 + 0.994745i \(0.467353\pi\)
\(860\) 91368.8 3.62285
\(861\) 22960.8 0.908828
\(862\) −45727.2 −1.80682
\(863\) −25022.0 −0.986974 −0.493487 0.869753i \(-0.664278\pi\)
−0.493487 + 0.869753i \(0.664278\pi\)
\(864\) −2876.13 −0.113250
\(865\) −21311.9 −0.837720
\(866\) −80932.2 −3.17574
\(867\) 29583.3 1.15883
\(868\) −88981.1 −3.47951
\(869\) −36722.5 −1.43351
\(870\) 26460.6 1.03115
\(871\) −19399.2 −0.754668
\(872\) −26575.4 −1.03206
\(873\) −7588.83 −0.294207
\(874\) −18946.0 −0.733246
\(875\) −30215.7 −1.16740
\(876\) −49471.3 −1.90808
\(877\) −17056.2 −0.656724 −0.328362 0.944552i \(-0.606497\pi\)
−0.328362 + 0.944552i \(0.606497\pi\)
\(878\) 2159.99 0.0830252
\(879\) 9588.07 0.367915
\(880\) −51385.2 −1.96840
\(881\) −36423.2 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(882\) −40297.7 −1.53843
\(883\) 21918.4 0.835348 0.417674 0.908597i \(-0.362846\pi\)
0.417674 + 0.908597i \(0.362846\pi\)
\(884\) −59870.6 −2.27790
\(885\) −34535.9 −1.31176
\(886\) −27590.1 −1.04617
\(887\) 27382.8 1.03656 0.518278 0.855212i \(-0.326573\pi\)
0.518278 + 0.855212i \(0.326573\pi\)
\(888\) 31690.3 1.19759
\(889\) −70626.3 −2.66449
\(890\) 70225.1 2.64489
\(891\) 3200.98 0.120356
\(892\) 9053.97 0.339853
\(893\) −6437.17 −0.241222
\(894\) 38678.8 1.44699
\(895\) −17677.2 −0.660206
\(896\) −69711.3 −2.59921
\(897\) 15352.0 0.571447
\(898\) −15678.6 −0.582631
\(899\) 18867.1 0.699948
\(900\) 9635.21 0.356860
\(901\) 50264.6 1.85855
\(902\) 43241.4 1.59621
\(903\) 40857.2 1.50569
\(904\) 6833.60 0.251418
\(905\) 14865.4 0.546014
\(906\) 29310.6 1.07481
\(907\) 45169.3 1.65361 0.826805 0.562489i \(-0.190156\pi\)
0.826805 + 0.562489i \(0.190156\pi\)
\(908\) −20130.3 −0.735735
\(909\) −16742.4 −0.610904
\(910\) −69012.1 −2.51399
\(911\) −21554.8 −0.783912 −0.391956 0.919984i \(-0.628201\pi\)
−0.391956 + 0.919984i \(0.628201\pi\)
\(912\) 6008.34 0.218153
\(913\) −20240.8 −0.733704
\(914\) −49639.7 −1.79643
\(915\) 25507.4 0.921585
\(916\) −63246.9 −2.28137
\(917\) −35461.4 −1.27703
\(918\) 16484.6 0.592674
\(919\) 18824.7 0.675702 0.337851 0.941200i \(-0.390300\pi\)
0.337851 + 0.941200i \(0.390300\pi\)
\(920\) 113543. 4.06893
\(921\) −2012.58 −0.0720052
\(922\) 6699.38 0.239298
\(923\) 6119.70 0.218236
\(924\) −71771.4 −2.55531
\(925\) −14155.2 −0.503157
\(926\) −88366.2 −3.13596
\(927\) 7705.65 0.273017
\(928\) −13673.7 −0.483685
\(929\) 11117.2 0.392621 0.196310 0.980542i \(-0.437104\pi\)
0.196310 + 0.980542i \(0.437104\pi\)
\(930\) 30298.8 1.06832
\(931\) 18781.9 0.661172
\(932\) 93202.8 3.27571
\(933\) 16454.8 0.577393
\(934\) 82223.1 2.88054
\(935\) 65708.6 2.29829
\(936\) −11929.0 −0.416572
\(937\) 17424.4 0.607504 0.303752 0.952751i \(-0.401761\pi\)
0.303752 + 0.952751i \(0.401761\pi\)
\(938\) −119762. −4.16883
\(939\) 5797.51 0.201485
\(940\) 72012.3 2.49871
\(941\) 54044.8 1.87228 0.936138 0.351633i \(-0.114374\pi\)
0.936138 + 0.351633i \(0.114374\pi\)
\(942\) −11448.5 −0.395979
\(943\) −38996.2 −1.34665
\(944\) 79991.2 2.75794
\(945\) 12976.7 0.446702
\(946\) 76945.4 2.64451
\(947\) −34259.8 −1.17560 −0.587800 0.809007i \(-0.700006\pi\)
−0.587800 + 0.809007i \(0.700006\pi\)
\(948\) −48035.2 −1.64569
\(949\) −27358.1 −0.935808
\(950\) −6575.76 −0.224574
\(951\) −11517.7 −0.392731
\(952\) −198007. −6.74103
\(953\) 40244.0 1.36792 0.683961 0.729518i \(-0.260256\pi\)
0.683961 + 0.729518i \(0.260256\pi\)
\(954\) 18694.7 0.634448
\(955\) −14511.1 −0.491696
\(956\) 71637.8 2.42357
\(957\) 15218.0 0.514033
\(958\) 1550.87 0.0523031
\(959\) −8605.30 −0.289760
\(960\) 9248.33 0.310926
\(961\) −8187.17 −0.274820
\(962\) 32713.4 1.09638
\(963\) −6456.63 −0.216056
\(964\) −20410.7 −0.681935
\(965\) 14345.8 0.478558
\(966\) 94776.3 3.15670
\(967\) 6724.96 0.223640 0.111820 0.993728i \(-0.464332\pi\)
0.111820 + 0.993728i \(0.464332\pi\)
\(968\) −10696.4 −0.355160
\(969\) −7683.13 −0.254714
\(970\) −57939.0 −1.91785
\(971\) −17155.5 −0.566989 −0.283494 0.958974i \(-0.591494\pi\)
−0.283494 + 0.958974i \(0.591494\pi\)
\(972\) 4187.08 0.138169
\(973\) −77629.2 −2.55774
\(974\) 19000.2 0.625058
\(975\) 5328.36 0.175020
\(976\) −59079.7 −1.93760
\(977\) 9557.99 0.312986 0.156493 0.987679i \(-0.449981\pi\)
0.156493 + 0.987679i \(0.449981\pi\)
\(978\) 6342.54 0.207374
\(979\) 40387.9 1.31849
\(980\) −210112. −6.84876
\(981\) 5158.45 0.167886
\(982\) 77706.5 2.52517
\(983\) 2714.06 0.0880622 0.0440311 0.999030i \(-0.485980\pi\)
0.0440311 + 0.999030i \(0.485980\pi\)
\(984\) 30301.3 0.981677
\(985\) 54601.3 1.76624
\(986\) 78371.0 2.53128
\(987\) 32201.6 1.03849
\(988\) 10378.4 0.334190
\(989\) −69391.2 −2.23105
\(990\) 24438.8 0.784561
\(991\) 55187.0 1.76899 0.884496 0.466547i \(-0.154502\pi\)
0.884496 + 0.466547i \(0.154502\pi\)
\(992\) −15657.1 −0.501121
\(993\) −6909.74 −0.220820
\(994\) 37780.2 1.20555
\(995\) 6404.89 0.204069
\(996\) −26476.2 −0.842298
\(997\) 34573.5 1.09825 0.549124 0.835741i \(-0.314962\pi\)
0.549124 + 0.835741i \(0.314962\pi\)
\(998\) −108665. −3.44662
\(999\) −6151.28 −0.194813
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2031.4.a.d.1.7 94
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.4.a.d.1.7 94 1.1 even 1 trivial