Properties

Label 204.4.l
Level $204$
Weight $4$
Character orbit 204.l
Rep. character $\chi_{204}(47,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $208$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 204 = 2^{2} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 204.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 204 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(204, [\chi])\).

Total New Old
Modular forms 224 224 0
Cusp forms 208 208 0
Eisenstein series 16 16 0

Trace form

\( 208 q - 8 q^{4} + 14 q^{6} - 96 q^{10} - 58 q^{12} - 16 q^{13} + 256 q^{16} - 36 q^{18} - 8 q^{21} + 280 q^{22} + 302 q^{24} + 720 q^{28} + 608 q^{30} + 528 q^{33} + 888 q^{34} + 520 q^{37} - 1068 q^{40}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(204, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
204.4.l.a 204.l 204.l $208$ $12.036$ None 204.4.l.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$