Properties

Label 2040.2.h
Level $2040$
Weight $2$
Character orbit 2040.h
Rep. character $\chi_{2040}(1801,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $10$
Sturm bound $864$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(864\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2040, [\chi])\).

Total New Old
Modular forms 448 36 412
Cusp forms 416 36 380
Eisenstein series 32 0 32

Trace form

\( 36 q - 36 q^{9} - 8 q^{13} - 8 q^{17} - 36 q^{25} - 8 q^{33} - 40 q^{43} - 48 q^{47} - 36 q^{49} + 8 q^{51} - 48 q^{53} + 8 q^{55} + 48 q^{59} + 8 q^{67} + 16 q^{69} + 64 q^{77} + 36 q^{81} - 48 q^{83}+ \cdots + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2040, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2040.2.h.a 2040.h 17.b $2$ $16.289$ \(\Q(\sqrt{-1}) \) None 2040.2.h.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-i q^{5}+4 i q^{7}-q^{9}-4 i q^{11}+\cdots\)
2040.2.h.b 2040.h 17.b $2$ $16.289$ \(\Q(\sqrt{-1}) \) None 2040.2.h.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+i q^{5}+4 i q^{7}-q^{9}+4 i q^{11}+\cdots\)
2040.2.h.c 2040.h 17.b $2$ $16.289$ \(\Q(\sqrt{-1}) \) None 2040.2.h.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+i q^{5}+4 i q^{7}-q^{9}-2 q^{13}+\cdots\)
2040.2.h.d 2040.h 17.b $2$ $16.289$ \(\Q(\sqrt{-1}) \) None 2040.2.h.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-i q^{5}+2 i q^{7}-q^{9}-2 q^{13}+\cdots\)
2040.2.h.e 2040.h 17.b $2$ $16.289$ \(\Q(\sqrt{-1}) \) None 2040.2.h.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-i q^{5}+i q^{7}-q^{9}-5 i q^{11}+\cdots\)
2040.2.h.f 2040.h 17.b $2$ $16.289$ \(\Q(\sqrt{-1}) \) None 2040.2.h.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+i q^{5}+i q^{7}-q^{9}-3 i q^{11}+\cdots\)
2040.2.h.g 2040.h 17.b $4$ $16.289$ \(\Q(i, \sqrt{41})\) None 2040.2.h.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+\beta _{2}q^{5}+\beta _{1}q^{7}-q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
2040.2.h.h 2040.h 17.b $4$ $16.289$ \(\Q(i, \sqrt{17})\) None 2040.2.h.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+\beta _{2}q^{5}+(\beta _{1}-\beta _{2})q^{7}-q^{9}+\cdots\)
2040.2.h.i 2040.h 17.b $6$ $16.289$ 6.0.399424.1 None 2040.2.h.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+\beta _{2}q^{5}+(2\beta _{2}+\beta _{3})q^{7}-q^{9}+\cdots\)
2040.2.h.j 2040.h 17.b $10$ $16.289$ 10.0.\(\cdots\).1 None 2040.2.h.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}-\beta _{4}q^{5}+(\beta _{4}+\beta _{8})q^{7}-q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2040, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2040, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(408, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(680, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1020, [\chi])\)\(^{\oplus 2}\)