Properties

Label 20400.2.a.p
Level 2040020400
Weight 22
Character orbit 20400.a
Self dual yes
Analytic conductor 162.895162.895
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [20400,2,Mod(1,20400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(20400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("20400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 20400=2435217 20400 = 2^{4} \cdot 3 \cdot 5^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 20400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 162.894820123162.894820123
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq3q7+q92q11+5q13q17+7q19+q21+8q23q27+7q31+2q336q375q39+6q41+5q43+12q476q49+q51+2q99+O(q100) q - q^{3} - q^{7} + q^{9} - 2 q^{11} + 5 q^{13} - q^{17} + 7 q^{19} + q^{21} + 8 q^{23} - q^{27} + 7 q^{31} + 2 q^{33} - 6 q^{37} - 5 q^{39} + 6 q^{41} + 5 q^{43} + 12 q^{47} - 6 q^{49} + q^{51}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 1 -1
1717 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.