Defining parameters
Level: | \( N \) | = | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(12672\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(207))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4928 | 3841 | 1087 |
Cusp forms | 4576 | 3653 | 923 |
Eisenstein series | 352 | 188 | 164 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(207))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(207))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(207)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 1}\)