Properties

Label 207.4
Level 207
Weight 4
Dimension 3653
Nonzero newspaces 8
Newform subspaces 20
Sturm bound 12672
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 20 \)
Sturm bound: \(12672\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(207))\).

Total New Old
Modular forms 4928 3841 1087
Cusp forms 4576 3653 923
Eisenstein series 352 188 164

Trace form

\( 3653 q - 27 q^{2} - 38 q^{3} - 7 q^{4} - 3 q^{5} - 62 q^{6} - 59 q^{7} - 165 q^{8} - 134 q^{9} - 123 q^{10} + 99 q^{11} + 268 q^{12} + 85 q^{13} + 87 q^{14} - 98 q^{15} - 615 q^{16} - 517 q^{17} - 476 q^{18}+ \cdots - 638 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(207))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
207.4.a \(\chi_{207}(1, \cdot)\) 207.4.a.a 1 1
207.4.a.b 2
207.4.a.c 2
207.4.a.d 4
207.4.a.e 4
207.4.a.f 4
207.4.a.g 5
207.4.a.h 5
207.4.c \(\chi_{207}(206, \cdot)\) 207.4.c.a 24 1
207.4.e \(\chi_{207}(70, \cdot)\) 207.4.e.a 60 2
207.4.e.b 72
207.4.g \(\chi_{207}(68, \cdot)\) 207.4.g.a 12 2
207.4.g.b 128
207.4.i \(\chi_{207}(55, \cdot)\) 207.4.i.a 50 10
207.4.i.b 60
207.4.i.c 60
207.4.i.d 120
207.4.k \(\chi_{207}(17, \cdot)\) 207.4.k.a 240 10
207.4.m \(\chi_{207}(4, \cdot)\) 207.4.m.a 1400 20
207.4.o \(\chi_{207}(5, \cdot)\) 207.4.o.a 1400 20

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(207))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(207)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 1}\)