Properties

Label 208.8.w
Level 208208
Weight 88
Character orbit 208.w
Rep. character χ208(17,)\chi_{208}(17,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 9696
Newform subspaces 44
Sturm bound 224224
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 208=2413 208 = 2^{4} \cdot 13
Weight: k k == 8 8
Character orbit: [χ][\chi] == 208.w (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 4 4
Sturm bound: 224224
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M8(208,[χ])M_{8}(208, [\chi]).

Total New Old
Modular forms 404 100 304
Cusp forms 380 96 284
Eisenstein series 24 4 20

Trace form

96q+55q33015q733535q9+3q113279q136558q15+726q17+3q19+73003q231366942q2581254q2730212q293q33+436376q35+310392q37+4945755q97+O(q100) 96 q + 55 q^{3} - 3015 q^{7} - 33535 q^{9} + 3 q^{11} - 3279 q^{13} - 6558 q^{15} + 726 q^{17} + 3 q^{19} + 73003 q^{23} - 1366942 q^{25} - 81254 q^{27} - 30212 q^{29} - 3 q^{33} + 436376 q^{35} + 310392 q^{37}+ \cdots - 4945755 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(208,[χ])S_{8}^{\mathrm{new}}(208, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
208.8.w.a 208.w 13.e 1414 64.97664.976 Q[x]/(x14+)\mathbb{Q}[x]/(x^{14} + \cdots) None 13.8.e.a 00 26-26 00 27722772 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(4β1β4+β6)q3+(25+26β1+)q5+q+(-4\beta _{1}-\beta _{4}+\beta _{6})q^{3}+(-2^{5}+2^{6}\beta _{1}+\cdots)q^{5}+\cdots
208.8.w.b 208.w 13.e 1616 64.97664.976 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 26.8.e.a 00 00 00 2520-2520 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+β3q3+(11+21β1+β2+β3+β7+)q5+q+\beta _{3}q^{3}+(11+21\beta _{1}+\beta _{2}+\beta _{3}+\beta _{7}+\cdots)q^{5}+\cdots
208.8.w.c 208.w 13.e 1818 64.97664.976 Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots) None 52.8.h.a 00 2727 00 249-249 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(33β2+β3)q3+(9β1+19β2+)q5+q+(3-3\beta _{2}+\beta _{3})q^{3}+(-9-\beta _{1}+19\beta _{2}+\cdots)q^{5}+\cdots
208.8.w.d 208.w 13.e 4848 64.97664.976 None 104.8.o.a 00 5454 00 3018-3018 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S8old(208,[χ])S_{8}^{\mathrm{old}}(208, [\chi]) into lower level spaces

S8old(208,[χ]) S_{8}^{\mathrm{old}}(208, [\chi]) \simeq S8new(13,[χ])S_{8}^{\mathrm{new}}(13, [\chi])5^{\oplus 5}\oplusS8new(26,[χ])S_{8}^{\mathrm{new}}(26, [\chi])4^{\oplus 4}\oplusS8new(52,[χ])S_{8}^{\mathrm{new}}(52, [\chi])3^{\oplus 3}\oplusS8new(104,[χ])S_{8}^{\mathrm{new}}(104, [\chi])2^{\oplus 2}