Properties

Label 208.8.w
Level $208$
Weight $8$
Character orbit 208.w
Rep. character $\chi_{208}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $4$
Sturm bound $224$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 208.w (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(224\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(208, [\chi])\).

Total New Old
Modular forms 404 100 304
Cusp forms 380 96 284
Eisenstein series 24 4 20

Trace form

\( 96 q + 55 q^{3} - 3015 q^{7} - 33535 q^{9} + 3 q^{11} - 3279 q^{13} - 6558 q^{15} + 726 q^{17} + 3 q^{19} + 73003 q^{23} - 1366942 q^{25} - 81254 q^{27} - 30212 q^{29} - 3 q^{33} + 436376 q^{35} + 310392 q^{37}+ \cdots - 4945755 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(208, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
208.8.w.a 208.w 13.e $14$ $64.976$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 13.8.e.a \(0\) \(-26\) \(0\) \(2772\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-4\beta _{1}-\beta _{4}+\beta _{6})q^{3}+(-2^{5}+2^{6}\beta _{1}+\cdots)q^{5}+\cdots\)
208.8.w.b 208.w 13.e $16$ $64.976$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 26.8.e.a \(0\) \(0\) \(0\) \(-2520\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{3}+(11+21\beta _{1}+\beta _{2}+\beta _{3}+\beta _{7}+\cdots)q^{5}+\cdots\)
208.8.w.c 208.w 13.e $18$ $64.976$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 52.8.h.a \(0\) \(27\) \(0\) \(-249\) $\mathrm{SU}(2)[C_{6}]$ \(q+(3-3\beta _{2}+\beta _{3})q^{3}+(-9-\beta _{1}+19\beta _{2}+\cdots)q^{5}+\cdots\)
208.8.w.d 208.w 13.e $48$ $64.976$ None 104.8.o.a \(0\) \(54\) \(0\) \(-3018\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{8}^{\mathrm{old}}(208, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(208, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)