Defining parameters
Level: | \( N \) | \(=\) | \( 208 = 2^{4} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 208.w (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(208, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 404 | 100 | 304 |
Cusp forms | 380 | 96 | 284 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(208, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
208.8.w.a | $14$ | $64.976$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(-26\) | \(0\) | \(2772\) | \(q+(-4\beta _{1}-\beta _{4}+\beta _{6})q^{3}+(-2^{5}+2^{6}\beta _{1}+\cdots)q^{5}+\cdots\) |
208.8.w.b | $16$ | $64.976$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-2520\) | \(q+\beta _{3}q^{3}+(11+21\beta _{1}+\beta _{2}+\beta _{3}+\beta _{7}+\cdots)q^{5}+\cdots\) |
208.8.w.c | $18$ | $64.976$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(27\) | \(0\) | \(-249\) | \(q+(3-3\beta _{2}+\beta _{3})q^{3}+(-9-\beta _{1}+19\beta _{2}+\cdots)q^{5}+\cdots\) |
208.8.w.d | $48$ | $64.976$ | None | \(0\) | \(54\) | \(0\) | \(-3018\) |
Decomposition of \(S_{8}^{\mathrm{old}}(208, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(208, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)