Properties

Label 21.10.g
Level $21$
Weight $10$
Character orbit 21.g
Rep. character $\chi_{21}(5,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $44$
Newform subspaces $1$
Sturm bound $26$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 21.g (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(26\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(21, [\chi])\).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

\( 44 q - 3 q^{3} + 5118 q^{4} - 7504 q^{7} + 17745 q^{9} + 76890 q^{10} + 81456 q^{12} - 641226 q^{15} - 1273994 q^{16} + 625962 q^{18} - 1139244 q^{19} - 1975575 q^{21} + 5549324 q^{22} + 6080166 q^{24}+ \cdots + 1832627190 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(21, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
21.10.g.a 21.g 21.g $44$ $10.816$ None 21.10.g.a \(0\) \(-3\) \(0\) \(-7504\) $\mathrm{SU}(2)[C_{6}]$