Properties

Label 21.18.g
Level 2121
Weight 1818
Character orbit 21.g
Rep. character χ21(5,)\chi_{21}(5,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 8686
Newform subspaces 22
Sturm bound 4848
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 21=37 21 = 3 \cdot 7
Weight: k k == 18 18
Character orbit: [χ][\chi] == 21.g (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 2 2
Sturm bound: 4848
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M18(21,[χ])M_{18}(21, [\chi]).

Total New Old
Modular forms 94 94 0
Cusp forms 86 86 0
Eisenstein series 8 8 0

Trace form

86q3q3+2621438q47098699q7+30469167q9+465470970q105071654704q127104382296q15127639474314q1614553542550q18+150097298991q19+374239010916q21++30 ⁣ ⁣80q99+O(q100) 86 q - 3 q^{3} + 2621438 q^{4} - 7098699 q^{7} + 30469167 q^{9} + 465470970 q^{10} - 5071654704 q^{12} - 7104382296 q^{15} - 127639474314 q^{16} - 14553542550 q^{18} + 150097298991 q^{19} + 374239010916 q^{21}+ \cdots + 30\!\cdots\!80 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S18new(21,[χ])S_{18}^{\mathrm{new}}(21, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
21.18.g.a 21.g 21.g 22 38.47738.477 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 21.18.g.a 00 1968319683 00 2758181-2758181 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(38+38ζ6)q3+(217+217ζ6)q4+q+(3^{8}+3^{8}\zeta_{6})q^{3}+(-2^{17}+2^{17}\zeta_{6})q^{4}+\cdots
21.18.g.b 21.g 21.g 8484 38.47738.477 None 21.18.g.b 00 19686-19686 00 4340518-4340518 SU(2)[C6]\mathrm{SU}(2)[C_{6}]