Defining parameters
Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 18 \) |
Character orbit: | \([\chi]\) | \(=\) | 21.g (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{18}(21, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 94 | 94 | 0 |
Cusp forms | 86 | 86 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{18}^{\mathrm{new}}(21, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
21.18.g.a | $2$ | $38.477$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(19683\) | \(0\) | \(-2758181\) | \(q+(3^{8}+3^{8}\zeta_{6})q^{3}+(-2^{17}+2^{17}\zeta_{6})q^{4}+\cdots\) |
21.18.g.b | $84$ | $38.477$ | None | \(0\) | \(-19686\) | \(0\) | \(-4340518\) |