Properties

Label 21.6.a
Level 2121
Weight 66
Character orbit 21.a
Rep. character χ21(1,)\chi_{21}(1,\cdot)
Character field Q\Q
Dimension 44
Newform subspaces 44
Sturm bound 1616
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 21=37 21 = 3 \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 21.a (trivial)
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 1616
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(21))M_{6}(\Gamma_0(21)).

Total New Old
Modular forms 16 4 12
Cusp forms 12 4 8
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

3377FrickeDim
++++++11
++--11
-++-22
Plus space++11
Minus space-33

Trace form

4q+10q2+34q4+32q5+180q698q7+270q8+324q91092q10+248q11+792q1288q131078q14504q15+466q163168q17+810q18++20088q99+O(q100) 4 q + 10 q^{2} + 34 q^{4} + 32 q^{5} + 180 q^{6} - 98 q^{7} + 270 q^{8} + 324 q^{9} - 1092 q^{10} + 248 q^{11} + 792 q^{12} - 88 q^{13} - 1078 q^{14} - 504 q^{15} + 466 q^{16} - 3168 q^{17} + 810 q^{18}+ \cdots + 20088 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(21))S_{6}^{\mathrm{new}}(\Gamma_0(21)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 7
21.6.a.a 21.a 1.a 11 3.3683.368 Q\Q None 21.6.a.a 6-6 9-9 7878 4949 ++ - SU(2)\mathrm{SU}(2) q6q29q3+4q4+78q5+54q6+q-6q^{2}-9q^{3}+4q^{4}+78q^{5}+54q^{6}+\cdots
21.6.a.b 21.a 1.a 11 3.3683.368 Q\Q None 21.6.a.b 11 9-9 34-34 49-49 ++ ++ SU(2)\mathrm{SU}(2) q+q29q331q434q59q6+q+q^{2}-9q^{3}-31q^{4}-34q^{5}-9q^{6}+\cdots
21.6.a.c 21.a 1.a 11 3.3683.368 Q\Q None 21.6.a.c 55 99 9494 49-49 - ++ SU(2)\mathrm{SU}(2) q+5q2+9q37q4+94q5+45q6+q+5q^{2}+9q^{3}-7q^{4}+94q^{5}+45q^{6}+\cdots
21.6.a.d 21.a 1.a 11 3.3683.368 Q\Q None 21.6.a.d 1010 99 106-106 49-49 - ++ SU(2)\mathrm{SU}(2) q+10q2+9q3+68q4106q5+q+10q^{2}+9q^{3}+68q^{4}-106q^{5}+\cdots

Decomposition of S6old(Γ0(21))S_{6}^{\mathrm{old}}(\Gamma_0(21)) into lower level spaces

S6old(Γ0(21)) S_{6}^{\mathrm{old}}(\Gamma_0(21)) \simeq S6new(Γ0(3))S_{6}^{\mathrm{new}}(\Gamma_0(3))2^{\oplus 2}\oplusS6new(Γ0(7))S_{6}^{\mathrm{new}}(\Gamma_0(7))2^{\oplus 2}