Properties

Label 2100.4.bj
Level $2100$
Weight $4$
Character orbit 2100.bj
Rep. character $\chi_{2100}(451,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $912$
Sturm bound $1920$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1920\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2100, [\chi])\).

Total New Old
Modular forms 2928 912 2016
Cusp forms 2832 912 1920
Eisenstein series 96 0 96

Trace form

\( 912 q - 2 q^{2} - 10 q^{4} + 16 q^{8} - 4104 q^{9} - 142 q^{14} - 26 q^{16} - 18 q^{18} - 120 q^{21} + 28 q^{22} - 270 q^{24} - 750 q^{26} + 922 q^{28} + 800 q^{29} + 108 q^{32} + 36 q^{33} + 180 q^{36}+ \cdots - 5112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2100, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(700, [\chi])\)\(^{\oplus 2}\)