Properties

Label 2100.4.ce
Level $2100$
Weight $4$
Character orbit 2100.ce
Rep. character $\chi_{2100}(157,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $288$
Sturm bound $1920$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.ce (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1920\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2100, [\chi])\).

Total New Old
Modular forms 5904 288 5616
Cusp forms 5616 288 5328
Eisenstein series 288 0 288

Trace form

\( 288 q - 20 q^{7} + 112 q^{11} + 48 q^{21} + 232 q^{23} + 1056 q^{31} - 36 q^{33} + 120 q^{37} - 1168 q^{43} - 1464 q^{47} - 672 q^{51} + 640 q^{53} + 1392 q^{57} - 1296 q^{61} - 144 q^{63} - 80 q^{67} - 7424 q^{71}+ \cdots + 456 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2100, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(700, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1050, [\chi])\)\(^{\oplus 2}\)