Properties

Label 2100.4.ce
Level 21002100
Weight 44
Character orbit 2100.ce
Rep. character χ2100(157,)\chi_{2100}(157,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 288288
Sturm bound 19201920

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2100=223527 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2100.ce (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 35 35
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 19201920

Dimensions

The following table gives the dimensions of various subspaces of M4(2100,[χ])M_{4}(2100, [\chi]).

Total New Old
Modular forms 5904 288 5616
Cusp forms 5616 288 5328
Eisenstein series 288 0 288

Trace form

288q20q7+112q11+48q21+232q23+1056q3136q33+120q371168q431464q47672q51+640q53+1392q571296q61144q6380q677424q71++456q93+O(q100) 288 q - 20 q^{7} + 112 q^{11} + 48 q^{21} + 232 q^{23} + 1056 q^{31} - 36 q^{33} + 120 q^{37} - 1168 q^{43} - 1464 q^{47} - 672 q^{51} + 640 q^{53} + 1392 q^{57} - 1296 q^{61} - 144 q^{63} - 80 q^{67} - 7424 q^{71}+ \cdots + 456 q^{93}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(2100,[χ])S_{4}^{\mathrm{new}}(2100, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(2100,[χ])S_{4}^{\mathrm{old}}(2100, [\chi]) into lower level spaces