Properties

Label 2100.4.k.l.1849.1
Level $2100$
Weight $4$
Character 2100.1849
Analytic conductor $123.904$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{421})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 211x^{2} + 11025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.1
Root \(9.75914i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1849
Dual form 2100.4.k.l.1849.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} -7.00000i q^{7} -9.00000 q^{9} -47.0366 q^{11} -61.0366i q^{13} +132.073i q^{17} +105.110 q^{19} -21.0000 q^{21} -170.073i q^{23} +27.0000i q^{27} -260.073 q^{29} +24.9634 q^{31} +141.110i q^{33} +158.000i q^{37} -183.110 q^{39} -226.293 q^{41} -224.146i q^{43} -232.293i q^{47} -49.0000 q^{49} +396.219 q^{51} -11.1097i q^{53} -315.329i q^{57} -734.219 q^{59} +336.512 q^{61} +63.0000i q^{63} +270.219i q^{67} -510.219 q^{69} +116.963 q^{71} +981.622i q^{73} +329.256i q^{77} +974.658 q^{79} +81.0000 q^{81} +146.658i q^{83} +780.219i q^{87} -766.293 q^{89} -427.256 q^{91} -74.8903i q^{93} +1817.33i q^{97} +423.329 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9} - 24 q^{11} - 72 q^{19} - 84 q^{21} - 712 q^{29} + 264 q^{31} - 240 q^{39} + 408 q^{41} - 196 q^{49} + 600 q^{51} - 1952 q^{59} - 952 q^{61} - 1056 q^{69} + 632 q^{71} + 944 q^{79} + 324 q^{81}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 7.00000i − 0.377964i
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −47.0366 −1.28928 −0.644639 0.764487i \(-0.722992\pi\)
−0.644639 + 0.764487i \(0.722992\pi\)
\(12\) 0 0
\(13\) − 61.0366i − 1.30219i −0.758995 0.651096i \(-0.774309\pi\)
0.758995 0.651096i \(-0.225691\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 132.073i 1.88426i 0.335246 + 0.942131i \(0.391181\pi\)
−0.335246 + 0.942131i \(0.608819\pi\)
\(18\) 0 0
\(19\) 105.110 1.26915 0.634574 0.772862i \(-0.281175\pi\)
0.634574 + 0.772862i \(0.281175\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) − 170.073i − 1.54186i −0.636922 0.770928i \(-0.719793\pi\)
0.636922 0.770928i \(-0.280207\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −260.073 −1.66532 −0.832662 0.553782i \(-0.813184\pi\)
−0.832662 + 0.553782i \(0.813184\pi\)
\(30\) 0 0
\(31\) 24.9634 0.144631 0.0723156 0.997382i \(-0.476961\pi\)
0.0723156 + 0.997382i \(0.476961\pi\)
\(32\) 0 0
\(33\) 141.110i 0.744365i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 158.000i 0.702028i 0.936370 + 0.351014i \(0.114163\pi\)
−0.936370 + 0.351014i \(0.885837\pi\)
\(38\) 0 0
\(39\) −183.110 −0.751821
\(40\) 0 0
\(41\) −226.293 −0.861975 −0.430987 0.902358i \(-0.641835\pi\)
−0.430987 + 0.902358i \(0.641835\pi\)
\(42\) 0 0
\(43\) − 224.146i − 0.794930i −0.917617 0.397465i \(-0.869890\pi\)
0.917617 0.397465i \(-0.130110\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 232.293i − 0.720922i −0.932774 0.360461i \(-0.882619\pi\)
0.932774 0.360461i \(-0.117381\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 396.219 1.08788
\(52\) 0 0
\(53\) − 11.1097i − 0.0287931i −0.999896 0.0143966i \(-0.995417\pi\)
0.999896 0.0143966i \(-0.00458273\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 315.329i − 0.732743i
\(58\) 0 0
\(59\) −734.219 −1.62012 −0.810061 0.586345i \(-0.800566\pi\)
−0.810061 + 0.586345i \(0.800566\pi\)
\(60\) 0 0
\(61\) 336.512 0.706327 0.353163 0.935562i \(-0.385106\pi\)
0.353163 + 0.935562i \(0.385106\pi\)
\(62\) 0 0
\(63\) 63.0000i 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 270.219i 0.492725i 0.969178 + 0.246362i \(0.0792353\pi\)
−0.969178 + 0.246362i \(0.920765\pi\)
\(68\) 0 0
\(69\) −510.219 −0.890191
\(70\) 0 0
\(71\) 116.963 0.195507 0.0977536 0.995211i \(-0.468834\pi\)
0.0977536 + 0.995211i \(0.468834\pi\)
\(72\) 0 0
\(73\) 981.622i 1.57384i 0.617057 + 0.786919i \(0.288325\pi\)
−0.617057 + 0.786919i \(0.711675\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 329.256i 0.487301i
\(78\) 0 0
\(79\) 974.658 1.38807 0.694036 0.719941i \(-0.255831\pi\)
0.694036 + 0.719941i \(0.255831\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 146.658i 0.193950i 0.995287 + 0.0969749i \(0.0309167\pi\)
−0.995287 + 0.0969749i \(0.969083\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 780.219i 0.961475i
\(88\) 0 0
\(89\) −766.293 −0.912661 −0.456331 0.889810i \(-0.650837\pi\)
−0.456331 + 0.889810i \(0.650837\pi\)
\(90\) 0 0
\(91\) −427.256 −0.492182
\(92\) 0 0
\(93\) − 74.8903i − 0.0835028i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1817.33i 1.90229i 0.308750 + 0.951143i \(0.400090\pi\)
−0.308750 + 0.951143i \(0.599910\pi\)
\(98\) 0 0
\(99\) 423.329 0.429759
\(100\) 0 0
\(101\) 702.439 0.692032 0.346016 0.938229i \(-0.387534\pi\)
0.346016 + 0.938229i \(0.387534\pi\)
\(102\) 0 0
\(103\) 399.415i 0.382092i 0.981581 + 0.191046i \(0.0611880\pi\)
−0.981581 + 0.191046i \(0.938812\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1360.59i 1.22928i 0.788809 + 0.614639i \(0.210698\pi\)
−0.788809 + 0.614639i \(0.789302\pi\)
\(108\) 0 0
\(109\) 1458.88 1.28197 0.640987 0.767552i \(-0.278525\pi\)
0.640987 + 0.767552i \(0.278525\pi\)
\(110\) 0 0
\(111\) 474.000 0.405316
\(112\) 0 0
\(113\) − 1912.28i − 1.59197i −0.605319 0.795983i \(-0.706954\pi\)
0.605319 0.795983i \(-0.293046\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 549.329i 0.434064i
\(118\) 0 0
\(119\) 924.512 0.712184
\(120\) 0 0
\(121\) 881.439 0.662238
\(122\) 0 0
\(123\) 678.878i 0.497661i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 866.219i − 0.605233i −0.953112 0.302616i \(-0.902140\pi\)
0.953112 0.302616i \(-0.0978601\pi\)
\(128\) 0 0
\(129\) −672.439 −0.458953
\(130\) 0 0
\(131\) 43.7074 0.0291507 0.0145753 0.999894i \(-0.495360\pi\)
0.0145753 + 0.999894i \(0.495360\pi\)
\(132\) 0 0
\(133\) − 735.768i − 0.479693i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2297.30i − 1.43264i −0.697771 0.716321i \(-0.745825\pi\)
0.697771 0.716321i \(-0.254175\pi\)
\(138\) 0 0
\(139\) −1668.79 −1.01831 −0.509155 0.860675i \(-0.670042\pi\)
−0.509155 + 0.860675i \(0.670042\pi\)
\(140\) 0 0
\(141\) −696.878 −0.416225
\(142\) 0 0
\(143\) 2870.95i 1.67889i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 147.000i 0.0824786i
\(148\) 0 0
\(149\) 114.878 0.0631620 0.0315810 0.999501i \(-0.489946\pi\)
0.0315810 + 0.999501i \(0.489946\pi\)
\(150\) 0 0
\(151\) −335.415 −0.180766 −0.0903830 0.995907i \(-0.528809\pi\)
−0.0903830 + 0.995907i \(0.528809\pi\)
\(152\) 0 0
\(153\) − 1188.66i − 0.628087i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 528.744i − 0.268779i −0.990929 0.134390i \(-0.957093\pi\)
0.990929 0.134390i \(-0.0429074\pi\)
\(158\) 0 0
\(159\) −33.3291 −0.0166237
\(160\) 0 0
\(161\) −1190.51 −0.582767
\(162\) 0 0
\(163\) 3128.15i 1.50316i 0.659641 + 0.751581i \(0.270708\pi\)
−0.659641 + 0.751581i \(0.729292\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1446.66i 0.670334i 0.942159 + 0.335167i \(0.108793\pi\)
−0.942159 + 0.335167i \(0.891207\pi\)
\(168\) 0 0
\(169\) −1528.46 −0.695704
\(170\) 0 0
\(171\) −945.987 −0.423049
\(172\) 0 0
\(173\) 2207.93i 0.970321i 0.874425 + 0.485161i \(0.161239\pi\)
−0.874425 + 0.485161i \(0.838761\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2202.66i 0.935378i
\(178\) 0 0
\(179\) −770.134 −0.321578 −0.160789 0.986989i \(-0.551404\pi\)
−0.160789 + 0.986989i \(0.551404\pi\)
\(180\) 0 0
\(181\) −3117.22 −1.28012 −0.640058 0.768327i \(-0.721090\pi\)
−0.640058 + 0.768327i \(0.721090\pi\)
\(182\) 0 0
\(183\) − 1009.54i − 0.407798i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 6212.27i − 2.42934i
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 183.768 0.0696177 0.0348089 0.999394i \(-0.488918\pi\)
0.0348089 + 0.999394i \(0.488918\pi\)
\(192\) 0 0
\(193\) 673.269i 0.251103i 0.992087 + 0.125552i \(0.0400701\pi\)
−0.992087 + 0.125552i \(0.959930\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 517.329i 0.187097i 0.995615 + 0.0935487i \(0.0298211\pi\)
−0.995615 + 0.0935487i \(0.970179\pi\)
\(198\) 0 0
\(199\) 3843.18 1.36903 0.684513 0.729001i \(-0.260015\pi\)
0.684513 + 0.729001i \(0.260015\pi\)
\(200\) 0 0
\(201\) 810.658 0.284475
\(202\) 0 0
\(203\) 1820.51i 0.629433i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1530.66i 0.513952i
\(208\) 0 0
\(209\) −4944.00 −1.63629
\(210\) 0 0
\(211\) −4402.95 −1.43655 −0.718274 0.695760i \(-0.755068\pi\)
−0.718274 + 0.695760i \(0.755068\pi\)
\(212\) 0 0
\(213\) − 350.890i − 0.112876i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 174.744i − 0.0546654i
\(218\) 0 0
\(219\) 2944.87 0.908655
\(220\) 0 0
\(221\) 8061.29 2.45367
\(222\) 0 0
\(223\) 4218.80i 1.26687i 0.773796 + 0.633435i \(0.218356\pi\)
−0.773796 + 0.633435i \(0.781644\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4886.17i 1.42866i 0.699808 + 0.714331i \(0.253269\pi\)
−0.699808 + 0.714331i \(0.746731\pi\)
\(228\) 0 0
\(229\) 3917.39 1.13043 0.565215 0.824944i \(-0.308793\pi\)
0.565215 + 0.824944i \(0.308793\pi\)
\(230\) 0 0
\(231\) 987.768 0.281344
\(232\) 0 0
\(233\) 6058.65i 1.70350i 0.523950 + 0.851749i \(0.324458\pi\)
−0.523950 + 0.851749i \(0.675542\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 2923.97i − 0.801403i
\(238\) 0 0
\(239\) 6221.38 1.68380 0.841898 0.539636i \(-0.181438\pi\)
0.841898 + 0.539636i \(0.181438\pi\)
\(240\) 0 0
\(241\) 6257.54 1.67254 0.836272 0.548314i \(-0.184730\pi\)
0.836272 + 0.548314i \(0.184730\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 6415.54i − 1.65268i
\(248\) 0 0
\(249\) 439.975 0.111977
\(250\) 0 0
\(251\) 5030.51 1.26503 0.632516 0.774547i \(-0.282022\pi\)
0.632516 + 0.774547i \(0.282022\pi\)
\(252\) 0 0
\(253\) 7999.66i 1.98788i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1968.49i − 0.477785i −0.971046 0.238893i \(-0.923216\pi\)
0.971046 0.238893i \(-0.0767844\pi\)
\(258\) 0 0
\(259\) 1106.00 0.265342
\(260\) 0 0
\(261\) 2340.66 0.555108
\(262\) 0 0
\(263\) 1872.15i 0.438941i 0.975619 + 0.219471i \(0.0704330\pi\)
−0.975619 + 0.219471i \(0.929567\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2298.88i 0.526925i
\(268\) 0 0
\(269\) −955.513 −0.216575 −0.108287 0.994120i \(-0.534537\pi\)
−0.108287 + 0.994120i \(0.534537\pi\)
\(270\) 0 0
\(271\) 7659.13 1.71682 0.858412 0.512961i \(-0.171452\pi\)
0.858412 + 0.512961i \(0.171452\pi\)
\(272\) 0 0
\(273\) 1281.77i 0.284162i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6616.05i 1.43509i 0.696512 + 0.717545i \(0.254734\pi\)
−0.696512 + 0.717545i \(0.745266\pi\)
\(278\) 0 0
\(279\) −224.671 −0.0482104
\(280\) 0 0
\(281\) 5008.66 1.06331 0.531657 0.846959i \(-0.321569\pi\)
0.531657 + 0.846959i \(0.321569\pi\)
\(282\) 0 0
\(283\) − 5191.80i − 1.09053i −0.838263 0.545266i \(-0.816429\pi\)
0.838263 0.545266i \(-0.183571\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1584.05i 0.325796i
\(288\) 0 0
\(289\) −12530.3 −2.55044
\(290\) 0 0
\(291\) 5451.99 1.09829
\(292\) 0 0
\(293\) − 5656.32i − 1.12780i −0.825843 0.563900i \(-0.809300\pi\)
0.825843 0.563900i \(-0.190700\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1269.99i − 0.248122i
\(298\) 0 0
\(299\) −10380.7 −2.00779
\(300\) 0 0
\(301\) −1569.02 −0.300455
\(302\) 0 0
\(303\) − 2107.32i − 0.399545i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6721.49i 1.24956i 0.780800 + 0.624781i \(0.214812\pi\)
−0.780800 + 0.624781i \(0.785188\pi\)
\(308\) 0 0
\(309\) 1198.24 0.220601
\(310\) 0 0
\(311\) −3954.58 −0.721041 −0.360521 0.932751i \(-0.617401\pi\)
−0.360521 + 0.932751i \(0.617401\pi\)
\(312\) 0 0
\(313\) 7170.47i 1.29489i 0.762114 + 0.647443i \(0.224162\pi\)
−0.762114 + 0.647443i \(0.775838\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2169.62i − 0.384410i −0.981355 0.192205i \(-0.938436\pi\)
0.981355 0.192205i \(-0.0615639\pi\)
\(318\) 0 0
\(319\) 12232.9 2.14706
\(320\) 0 0
\(321\) 4081.76 0.709724
\(322\) 0 0
\(323\) 13882.2i 2.39141i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 4376.63i − 0.740148i
\(328\) 0 0
\(329\) −1626.05 −0.272483
\(330\) 0 0
\(331\) −6194.90 −1.02871 −0.514354 0.857578i \(-0.671968\pi\)
−0.514354 + 0.857578i \(0.671968\pi\)
\(332\) 0 0
\(333\) − 1422.00i − 0.234009i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8902.68i 1.43905i 0.694466 + 0.719525i \(0.255640\pi\)
−0.694466 + 0.719525i \(0.744360\pi\)
\(338\) 0 0
\(339\) −5736.84 −0.919122
\(340\) 0 0
\(341\) −1174.19 −0.186470
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 127.193i − 0.0196774i −0.999952 0.00983871i \(-0.996868\pi\)
0.999952 0.00983871i \(-0.00313181\pi\)
\(348\) 0 0
\(349\) −4821.88 −0.739568 −0.369784 0.929118i \(-0.620568\pi\)
−0.369784 + 0.929118i \(0.620568\pi\)
\(350\) 0 0
\(351\) 1647.99 0.250607
\(352\) 0 0
\(353\) 1739.34i 0.262254i 0.991366 + 0.131127i \(0.0418596\pi\)
−0.991366 + 0.131127i \(0.958140\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 2773.54i − 0.411180i
\(358\) 0 0
\(359\) 3647.65 0.536255 0.268127 0.963383i \(-0.413595\pi\)
0.268127 + 0.963383i \(0.413595\pi\)
\(360\) 0 0
\(361\) 4189.05 0.610738
\(362\) 0 0
\(363\) − 2644.32i − 0.382343i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 31.5864i 0.00449264i 0.999997 + 0.00224632i \(0.000715026\pi\)
−0.999997 + 0.00224632i \(0.999285\pi\)
\(368\) 0 0
\(369\) 2036.63 0.287325
\(370\) 0 0
\(371\) −77.7680 −0.0108828
\(372\) 0 0
\(373\) 6879.14i 0.954929i 0.878651 + 0.477465i \(0.158444\pi\)
−0.878651 + 0.477465i \(0.841556\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15874.0i 2.16857i
\(378\) 0 0
\(379\) −685.997 −0.0929744 −0.0464872 0.998919i \(-0.514803\pi\)
−0.0464872 + 0.998919i \(0.514803\pi\)
\(380\) 0 0
\(381\) −2598.66 −0.349431
\(382\) 0 0
\(383\) − 6316.51i − 0.842712i −0.906895 0.421356i \(-0.861554\pi\)
0.906895 0.421356i \(-0.138446\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2017.32i 0.264977i
\(388\) 0 0
\(389\) −14214.5 −1.85271 −0.926357 0.376647i \(-0.877077\pi\)
−0.926357 + 0.376647i \(0.877077\pi\)
\(390\) 0 0
\(391\) 22462.1 2.90526
\(392\) 0 0
\(393\) − 131.122i − 0.0168301i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8461.81i 1.06974i 0.844935 + 0.534869i \(0.179639\pi\)
−0.844935 + 0.534869i \(0.820361\pi\)
\(398\) 0 0
\(399\) −2207.30 −0.276951
\(400\) 0 0
\(401\) −6394.44 −0.796317 −0.398158 0.917317i \(-0.630351\pi\)
−0.398158 + 0.917317i \(0.630351\pi\)
\(402\) 0 0
\(403\) − 1523.68i − 0.188338i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 7431.78i − 0.905109i
\(408\) 0 0
\(409\) −1171.27 −0.141603 −0.0708015 0.997490i \(-0.522556\pi\)
−0.0708015 + 0.997490i \(0.522556\pi\)
\(410\) 0 0
\(411\) −6891.91 −0.827136
\(412\) 0 0
\(413\) 5139.54i 0.612349i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5006.38i 0.587922i
\(418\) 0 0
\(419\) 8353.80 0.974009 0.487005 0.873399i \(-0.338089\pi\)
0.487005 + 0.873399i \(0.338089\pi\)
\(420\) 0 0
\(421\) 5803.66 0.671860 0.335930 0.941887i \(-0.390949\pi\)
0.335930 + 0.941887i \(0.390949\pi\)
\(422\) 0 0
\(423\) 2090.63i 0.240307i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 2355.58i − 0.266966i
\(428\) 0 0
\(429\) 8612.85 0.969306
\(430\) 0 0
\(431\) 9433.94 1.05433 0.527166 0.849763i \(-0.323255\pi\)
0.527166 + 0.849763i \(0.323255\pi\)
\(432\) 0 0
\(433\) − 5553.67i − 0.616380i −0.951325 0.308190i \(-0.900277\pi\)
0.951325 0.308190i \(-0.0997232\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 17876.3i − 1.95684i
\(438\) 0 0
\(439\) 7388.06 0.803218 0.401609 0.915811i \(-0.368451\pi\)
0.401609 + 0.915811i \(0.368451\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) − 7823.43i − 0.839058i −0.907742 0.419529i \(-0.862195\pi\)
0.907742 0.419529i \(-0.137805\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 344.633i − 0.0364666i
\(448\) 0 0
\(449\) 5863.12 0.616253 0.308127 0.951345i \(-0.400298\pi\)
0.308127 + 0.951345i \(0.400298\pi\)
\(450\) 0 0
\(451\) 10644.0 1.11132
\(452\) 0 0
\(453\) 1006.24i 0.104365i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 17072.7i − 1.74754i −0.486336 0.873772i \(-0.661667\pi\)
0.486336 0.873772i \(-0.338333\pi\)
\(458\) 0 0
\(459\) −3565.97 −0.362626
\(460\) 0 0
\(461\) −10383.1 −1.04900 −0.524499 0.851411i \(-0.675747\pi\)
−0.524499 + 0.851411i \(0.675747\pi\)
\(462\) 0 0
\(463\) − 858.169i − 0.0861393i −0.999072 0.0430696i \(-0.986286\pi\)
0.999072 0.0430696i \(-0.0137137\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5420.71i 0.537131i 0.963261 + 0.268566i \(0.0865496\pi\)
−0.963261 + 0.268566i \(0.913450\pi\)
\(468\) 0 0
\(469\) 1891.54 0.186232
\(470\) 0 0
\(471\) −1586.23 −0.155180
\(472\) 0 0
\(473\) 10543.1i 1.02489i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 99.9874i 0.00959771i
\(478\) 0 0
\(479\) −13103.4 −1.24991 −0.624956 0.780660i \(-0.714883\pi\)
−0.624956 + 0.780660i \(0.714883\pi\)
\(480\) 0 0
\(481\) 9643.78 0.914176
\(482\) 0 0
\(483\) 3571.54i 0.336461i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5500.85i 0.511843i 0.966698 + 0.255921i \(0.0823788\pi\)
−0.966698 + 0.255921i \(0.917621\pi\)
\(488\) 0 0
\(489\) 9384.44 0.867851
\(490\) 0 0
\(491\) 5940.67 0.546025 0.273013 0.962010i \(-0.411980\pi\)
0.273013 + 0.962010i \(0.411980\pi\)
\(492\) 0 0
\(493\) − 34348.7i − 3.13790i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 818.744i − 0.0738947i
\(498\) 0 0
\(499\) 14869.1 1.33393 0.666967 0.745087i \(-0.267592\pi\)
0.666967 + 0.745087i \(0.267592\pi\)
\(500\) 0 0
\(501\) 4339.97 0.387018
\(502\) 0 0
\(503\) 13859.9i 1.22860i 0.789074 + 0.614298i \(0.210561\pi\)
−0.789074 + 0.614298i \(0.789439\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4585.39i 0.401665i
\(508\) 0 0
\(509\) 2427.02 0.211348 0.105674 0.994401i \(-0.466300\pi\)
0.105674 + 0.994401i \(0.466300\pi\)
\(510\) 0 0
\(511\) 6871.35 0.594855
\(512\) 0 0
\(513\) 2837.96i 0.244248i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10926.2i 0.929469i
\(518\) 0 0
\(519\) 6623.78 0.560215
\(520\) 0 0
\(521\) 15695.0 1.31979 0.659894 0.751359i \(-0.270601\pi\)
0.659894 + 0.751359i \(0.270601\pi\)
\(522\) 0 0
\(523\) 18552.1i 1.55110i 0.631284 + 0.775552i \(0.282528\pi\)
−0.631284 + 0.775552i \(0.717472\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3297.00i 0.272523i
\(528\) 0 0
\(529\) −16757.9 −1.37732
\(530\) 0 0
\(531\) 6607.97 0.540041
\(532\) 0 0
\(533\) 13812.1i 1.12246i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2310.40i 0.185663i
\(538\) 0 0
\(539\) 2304.79 0.184183
\(540\) 0 0
\(541\) −15752.8 −1.25188 −0.625940 0.779871i \(-0.715285\pi\)
−0.625940 + 0.779871i \(0.715285\pi\)
\(542\) 0 0
\(543\) 9351.65i 0.739075i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 5697.49i 0.445351i 0.974893 + 0.222676i \(0.0714790\pi\)
−0.974893 + 0.222676i \(0.928521\pi\)
\(548\) 0 0
\(549\) −3028.61 −0.235442
\(550\) 0 0
\(551\) −27336.2 −2.11354
\(552\) 0 0
\(553\) − 6822.61i − 0.524642i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 2495.82i − 0.189858i −0.995484 0.0949292i \(-0.969738\pi\)
0.995484 0.0949292i \(-0.0302625\pi\)
\(558\) 0 0
\(559\) −13681.1 −1.03515
\(560\) 0 0
\(561\) −18636.8 −1.40258
\(562\) 0 0
\(563\) 9315.26i 0.697321i 0.937249 + 0.348660i \(0.113363\pi\)
−0.937249 + 0.348660i \(0.886637\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 567.000i − 0.0419961i
\(568\) 0 0
\(569\) −13941.5 −1.02717 −0.513584 0.858039i \(-0.671683\pi\)
−0.513584 + 0.858039i \(0.671683\pi\)
\(570\) 0 0
\(571\) −23166.8 −1.69790 −0.848950 0.528472i \(-0.822765\pi\)
−0.848950 + 0.528472i \(0.822765\pi\)
\(572\) 0 0
\(573\) − 551.304i − 0.0401938i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 24466.1i − 1.76523i −0.470099 0.882614i \(-0.655782\pi\)
0.470099 0.882614i \(-0.344218\pi\)
\(578\) 0 0
\(579\) 2019.81 0.144975
\(580\) 0 0
\(581\) 1026.61 0.0733061
\(582\) 0 0
\(583\) 522.563i 0.0371223i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17270.0i 1.21433i 0.794576 + 0.607165i \(0.207693\pi\)
−0.794576 + 0.607165i \(0.792307\pi\)
\(588\) 0 0
\(589\) 2623.90 0.183558
\(590\) 0 0
\(591\) 1551.99 0.108021
\(592\) 0 0
\(593\) 27715.9i 1.91932i 0.281169 + 0.959658i \(0.409278\pi\)
−0.281169 + 0.959658i \(0.590722\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 11529.5i − 0.790407i
\(598\) 0 0
\(599\) −10382.5 −0.708209 −0.354105 0.935206i \(-0.615214\pi\)
−0.354105 + 0.935206i \(0.615214\pi\)
\(600\) 0 0
\(601\) 11995.0 0.814120 0.407060 0.913401i \(-0.366554\pi\)
0.407060 + 0.913401i \(0.366554\pi\)
\(602\) 0 0
\(603\) − 2431.97i − 0.164242i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9933.39i 0.664224i 0.943240 + 0.332112i \(0.107761\pi\)
−0.943240 + 0.332112i \(0.892239\pi\)
\(608\) 0 0
\(609\) 5461.54 0.363403
\(610\) 0 0
\(611\) −14178.3 −0.938779
\(612\) 0 0
\(613\) − 27758.4i − 1.82896i −0.404635 0.914478i \(-0.632601\pi\)
0.404635 0.914478i \(-0.367399\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 7929.23i − 0.517373i −0.965961 0.258686i \(-0.916710\pi\)
0.965961 0.258686i \(-0.0832896\pi\)
\(618\) 0 0
\(619\) −15219.3 −0.988230 −0.494115 0.869397i \(-0.664508\pi\)
−0.494115 + 0.869397i \(0.664508\pi\)
\(620\) 0 0
\(621\) 4591.97 0.296730
\(622\) 0 0
\(623\) 5364.05i 0.344954i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 14832.0i 0.944710i
\(628\) 0 0
\(629\) −20867.6 −1.32280
\(630\) 0 0
\(631\) −17582.4 −1.10926 −0.554630 0.832097i \(-0.687140\pi\)
−0.554630 + 0.832097i \(0.687140\pi\)
\(632\) 0 0
\(633\) 13208.9i 0.829391i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2990.79i 0.186027i
\(638\) 0 0
\(639\) −1052.67 −0.0651690
\(640\) 0 0
\(641\) −25878.8 −1.59462 −0.797310 0.603570i \(-0.793744\pi\)
−0.797310 + 0.603570i \(0.793744\pi\)
\(642\) 0 0
\(643\) − 12752.7i − 0.782140i −0.920361 0.391070i \(-0.872105\pi\)
0.920361 0.391070i \(-0.127895\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 10878.7i − 0.661030i −0.943801 0.330515i \(-0.892778\pi\)
0.943801 0.330515i \(-0.107222\pi\)
\(648\) 0 0
\(649\) 34535.2 2.08879
\(650\) 0 0
\(651\) −524.232 −0.0315611
\(652\) 0 0
\(653\) 22872.2i 1.37069i 0.728219 + 0.685344i \(0.240348\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 8834.60i − 0.524612i
\(658\) 0 0
\(659\) 4776.04 0.282319 0.141159 0.989987i \(-0.454917\pi\)
0.141159 + 0.989987i \(0.454917\pi\)
\(660\) 0 0
\(661\) −7581.58 −0.446126 −0.223063 0.974804i \(-0.571606\pi\)
−0.223063 + 0.974804i \(0.571606\pi\)
\(662\) 0 0
\(663\) − 24183.9i − 1.41663i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 44231.5i 2.56769i
\(668\) 0 0
\(669\) 12656.4 0.731428
\(670\) 0 0
\(671\) −15828.4 −0.910652
\(672\) 0 0
\(673\) − 1065.64i − 0.0610361i −0.999534 0.0305180i \(-0.990284\pi\)
0.999534 0.0305180i \(-0.00971570\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 2755.35i − 0.156420i −0.996937 0.0782102i \(-0.975079\pi\)
0.996937 0.0782102i \(-0.0249205\pi\)
\(678\) 0 0
\(679\) 12721.3 0.718997
\(680\) 0 0
\(681\) 14658.5 0.824839
\(682\) 0 0
\(683\) − 5779.63i − 0.323794i −0.986808 0.161897i \(-0.948239\pi\)
0.986808 0.161897i \(-0.0517613\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 11752.2i − 0.652654i
\(688\) 0 0
\(689\) −678.098 −0.0374942
\(690\) 0 0
\(691\) 13138.1 0.723297 0.361648 0.932315i \(-0.382214\pi\)
0.361648 + 0.932315i \(0.382214\pi\)
\(692\) 0 0
\(693\) − 2963.30i − 0.162434i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 29887.2i − 1.62419i
\(698\) 0 0
\(699\) 18175.9 0.983515
\(700\) 0 0
\(701\) −19665.9 −1.05959 −0.529793 0.848127i \(-0.677730\pi\)
−0.529793 + 0.848127i \(0.677730\pi\)
\(702\) 0 0
\(703\) 16607.3i 0.890978i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 4917.07i − 0.261564i
\(708\) 0 0
\(709\) −13114.0 −0.694652 −0.347326 0.937744i \(-0.612910\pi\)
−0.347326 + 0.937744i \(0.612910\pi\)
\(710\) 0 0
\(711\) −8771.92 −0.462690
\(712\) 0 0
\(713\) − 4245.61i − 0.223000i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 18664.1i − 0.972141i
\(718\) 0 0
\(719\) −1591.29 −0.0825386 −0.0412693 0.999148i \(-0.513140\pi\)
−0.0412693 + 0.999148i \(0.513140\pi\)
\(720\) 0 0
\(721\) 2795.90 0.144417
\(722\) 0 0
\(723\) − 18772.6i − 0.965644i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 8618.60i − 0.439678i −0.975536 0.219839i \(-0.929447\pi\)
0.975536 0.219839i \(-0.0705533\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 29603.7 1.49786
\(732\) 0 0
\(733\) − 20709.0i − 1.04353i −0.853091 0.521763i \(-0.825275\pi\)
0.853091 0.521763i \(-0.174725\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 12710.2i − 0.635259i
\(738\) 0 0
\(739\) 31806.0 1.58323 0.791613 0.611022i \(-0.209242\pi\)
0.791613 + 0.611022i \(0.209242\pi\)
\(740\) 0 0
\(741\) −19246.6 −0.954172
\(742\) 0 0
\(743\) − 16734.7i − 0.826293i −0.910665 0.413146i \(-0.864430\pi\)
0.910665 0.413146i \(-0.135570\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1319.92i − 0.0646499i
\(748\) 0 0
\(749\) 9524.10 0.464623
\(750\) 0 0
\(751\) −21859.9 −1.06215 −0.531077 0.847323i \(-0.678213\pi\)
−0.531077 + 0.847323i \(0.678213\pi\)
\(752\) 0 0
\(753\) − 15091.5i − 0.730367i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 25203.5i 1.21009i 0.796191 + 0.605045i \(0.206845\pi\)
−0.796191 + 0.605045i \(0.793155\pi\)
\(758\) 0 0
\(759\) 23999.0 1.14770
\(760\) 0 0
\(761\) −1716.73 −0.0817760 −0.0408880 0.999164i \(-0.513019\pi\)
−0.0408880 + 0.999164i \(0.513019\pi\)
\(762\) 0 0
\(763\) − 10212.1i − 0.484541i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 44814.2i 2.10971i
\(768\) 0 0
\(769\) −17702.8 −0.830140 −0.415070 0.909790i \(-0.636243\pi\)
−0.415070 + 0.909790i \(0.636243\pi\)
\(770\) 0 0
\(771\) −5905.46 −0.275849
\(772\) 0 0
\(773\) 12756.7i 0.593564i 0.954945 + 0.296782i \(0.0959135\pi\)
−0.954945 + 0.296782i \(0.904087\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 3318.00i − 0.153195i
\(778\) 0 0
\(779\) −23785.5 −1.09397
\(780\) 0 0
\(781\) −5501.56 −0.252063
\(782\) 0 0
\(783\) − 7021.97i − 0.320492i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 24168.7i 1.09469i 0.836907 + 0.547345i \(0.184361\pi\)
−0.836907 + 0.547345i \(0.815639\pi\)
\(788\) 0 0
\(789\) 5616.44 0.253423
\(790\) 0 0
\(791\) −13386.0 −0.601707
\(792\) 0 0
\(793\) − 20539.5i − 0.919773i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 35375.0i − 1.57221i −0.618096 0.786103i \(-0.712096\pi\)
0.618096 0.786103i \(-0.287904\pi\)
\(798\) 0 0
\(799\) 30679.6 1.35841
\(800\) 0 0
\(801\) 6896.63 0.304220
\(802\) 0 0
\(803\) − 46172.1i − 2.02911i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2866.54i 0.125040i
\(808\) 0 0
\(809\) −14463.9 −0.628582 −0.314291 0.949327i \(-0.601767\pi\)
−0.314291 + 0.949327i \(0.601767\pi\)
\(810\) 0 0
\(811\) −1250.23 −0.0541325 −0.0270663 0.999634i \(-0.508617\pi\)
−0.0270663 + 0.999634i \(0.508617\pi\)
\(812\) 0 0
\(813\) − 22977.4i − 0.991208i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 23559.9i − 1.00888i
\(818\) 0 0
\(819\) 3845.30 0.164061
\(820\) 0 0
\(821\) −12337.5 −0.524462 −0.262231 0.965005i \(-0.584458\pi\)
−0.262231 + 0.965005i \(0.584458\pi\)
\(822\) 0 0
\(823\) 18837.4i 0.797852i 0.916983 + 0.398926i \(0.130617\pi\)
−0.916983 + 0.398926i \(0.869383\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 24463.7i − 1.02864i −0.857598 0.514320i \(-0.828044\pi\)
0.857598 0.514320i \(-0.171956\pi\)
\(828\) 0 0
\(829\) −15847.1 −0.663922 −0.331961 0.943293i \(-0.607710\pi\)
−0.331961 + 0.943293i \(0.607710\pi\)
\(830\) 0 0
\(831\) 19848.1 0.828549
\(832\) 0 0
\(833\) − 6471.58i − 0.269180i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 674.013i 0.0278343i
\(838\) 0 0
\(839\) −15175.4 −0.624451 −0.312225 0.950008i \(-0.601074\pi\)
−0.312225 + 0.950008i \(0.601074\pi\)
\(840\) 0 0
\(841\) 43249.0 1.77330
\(842\) 0 0
\(843\) − 15026.0i − 0.613905i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 6170.07i − 0.250302i
\(848\) 0 0
\(849\) −15575.4 −0.629619
\(850\) 0 0
\(851\) 26871.6 1.08243
\(852\) 0 0
\(853\) − 16286.7i − 0.653745i −0.945068 0.326872i \(-0.894005\pi\)
0.945068 0.326872i \(-0.105995\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 19223.2i − 0.766221i −0.923703 0.383110i \(-0.874853\pi\)
0.923703 0.383110i \(-0.125147\pi\)
\(858\) 0 0
\(859\) −37835.3 −1.50282 −0.751411 0.659835i \(-0.770626\pi\)
−0.751411 + 0.659835i \(0.770626\pi\)
\(860\) 0 0
\(861\) 4752.14 0.188098
\(862\) 0 0
\(863\) 4724.16i 0.186341i 0.995650 + 0.0931705i \(0.0297002\pi\)
−0.995650 + 0.0931705i \(0.970300\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 37590.9i 1.47250i
\(868\) 0 0
\(869\) −45844.6 −1.78961
\(870\) 0 0
\(871\) 16493.3 0.641622
\(872\) 0 0
\(873\) − 16356.0i − 0.634096i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 10312.1i − 0.397054i −0.980095 0.198527i \(-0.936384\pi\)
0.980095 0.198527i \(-0.0636157\pi\)
\(878\) 0 0
\(879\) −16968.9 −0.651136
\(880\) 0 0
\(881\) −30026.2 −1.14825 −0.574126 0.818767i \(-0.694658\pi\)
−0.574126 + 0.818767i \(0.694658\pi\)
\(882\) 0 0
\(883\) − 5078.42i − 0.193548i −0.995306 0.0967738i \(-0.969148\pi\)
0.995306 0.0967738i \(-0.0308523\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 37482.4i − 1.41887i −0.704772 0.709434i \(-0.748951\pi\)
0.704772 0.709434i \(-0.251049\pi\)
\(888\) 0 0
\(889\) −6063.54 −0.228756
\(890\) 0 0
\(891\) −3809.96 −0.143253
\(892\) 0 0
\(893\) − 24416.2i − 0.914958i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 31142.0i 1.15920i
\(898\) 0 0
\(899\) −6492.32 −0.240858
\(900\) 0 0
\(901\) 1467.29 0.0542538
\(902\) 0 0
\(903\) 4707.07i 0.173468i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 27832.8i − 1.01893i −0.860490 0.509467i \(-0.829843\pi\)
0.860490 0.509467i \(-0.170157\pi\)
\(908\) 0 0
\(909\) −6321.95 −0.230677
\(910\) 0 0
\(911\) −10366.9 −0.377026 −0.188513 0.982071i \(-0.560367\pi\)
−0.188513 + 0.982071i \(0.560367\pi\)
\(912\) 0 0
\(913\) − 6898.30i − 0.250055i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 305.952i − 0.0110179i
\(918\) 0 0
\(919\) 29978.3 1.07605 0.538026 0.842928i \(-0.319170\pi\)
0.538026 + 0.842928i \(0.319170\pi\)
\(920\) 0 0
\(921\) 20164.5 0.721435
\(922\) 0 0
\(923\) − 7139.05i − 0.254588i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 3594.73i − 0.127364i
\(928\) 0 0
\(929\) −19198.7 −0.678028 −0.339014 0.940781i \(-0.610093\pi\)
−0.339014 + 0.940781i \(0.610093\pi\)
\(930\) 0 0
\(931\) −5150.38 −0.181307
\(932\) 0 0
\(933\) 11863.7i 0.416293i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20296.3i 0.707631i 0.935315 + 0.353815i \(0.115116\pi\)
−0.935315 + 0.353815i \(0.884884\pi\)
\(938\) 0 0
\(939\) 21511.4 0.747602
\(940\) 0 0
\(941\) −19254.6 −0.667037 −0.333518 0.942744i \(-0.608236\pi\)
−0.333518 + 0.942744i \(0.608236\pi\)
\(942\) 0 0
\(943\) 38486.3i 1.32904i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 51679.2i 1.77333i 0.462408 + 0.886667i \(0.346986\pi\)
−0.462408 + 0.886667i \(0.653014\pi\)
\(948\) 0 0
\(949\) 59914.8 2.04944
\(950\) 0 0
\(951\) −6508.87 −0.221939
\(952\) 0 0
\(953\) 5456.65i 0.185476i 0.995691 + 0.0927378i \(0.0295618\pi\)
−0.995691 + 0.0927378i \(0.970438\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 36698.8i − 1.23961i
\(958\) 0 0
\(959\) −16081.1 −0.541488
\(960\) 0 0
\(961\) −29167.8 −0.979082
\(962\) 0 0
\(963\) − 12245.3i − 0.409759i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 15567.7i 0.517708i 0.965916 + 0.258854i \(0.0833448\pi\)
−0.965916 + 0.258854i \(0.916655\pi\)
\(968\) 0 0
\(969\) 41646.5 1.38068
\(970\) 0 0
\(971\) 13166.3 0.435145 0.217572 0.976044i \(-0.430186\pi\)
0.217572 + 0.976044i \(0.430186\pi\)
\(972\) 0 0
\(973\) 11681.5i 0.384885i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17844.2i 0.584325i 0.956369 + 0.292163i \(0.0943748\pi\)
−0.956369 + 0.292163i \(0.905625\pi\)
\(978\) 0 0
\(979\) 36043.8 1.17667
\(980\) 0 0
\(981\) −13129.9 −0.427325
\(982\) 0 0
\(983\) 6809.32i 0.220940i 0.993879 + 0.110470i \(0.0352355\pi\)
−0.993879 + 0.110470i \(0.964764\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4878.14i 0.157318i
\(988\) 0 0
\(989\) −38121.3 −1.22567
\(990\) 0 0
\(991\) −26981.0 −0.864864 −0.432432 0.901667i \(-0.642344\pi\)
−0.432432 + 0.901667i \(0.642344\pi\)
\(992\) 0 0
\(993\) 18584.7i 0.593925i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3272.54i 0.103954i 0.998648 + 0.0519771i \(0.0165523\pi\)
−0.998648 + 0.0519771i \(0.983448\pi\)
\(998\) 0 0
\(999\) −4266.00 −0.135105
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.k.l.1849.1 4
5.2 odd 4 2100.4.a.o.1.1 2
5.3 odd 4 420.4.a.i.1.1 2
5.4 even 2 inner 2100.4.k.l.1849.3 4
15.8 even 4 1260.4.a.n.1.2 2
20.3 even 4 1680.4.a.bc.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.4.a.i.1.1 2 5.3 odd 4
1260.4.a.n.1.2 2 15.8 even 4
1680.4.a.bc.1.2 2 20.3 even 4
2100.4.a.o.1.1 2 5.2 odd 4
2100.4.k.l.1849.1 4 1.1 even 1 trivial
2100.4.k.l.1849.3 4 5.4 even 2 inner