Properties

Label 2100.4.z
Level $2100$
Weight $4$
Character orbit 2100.z
Rep. character $\chi_{2100}(421,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $352$
Sturm bound $1920$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.z (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(1920\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2100, [\chi])\).

Total New Old
Modular forms 5808 352 5456
Cusp forms 5712 352 5360
Eisenstein series 96 0 96

Trace form

\( 352 q - 20 q^{5} - 792 q^{9} - 200 q^{13} - 24 q^{15} - 136 q^{17} - 72 q^{19} + 84 q^{21} + 264 q^{23} - 512 q^{25} + 24 q^{29} - 576 q^{33} + 56 q^{35} + 228 q^{37} - 696 q^{41} + 928 q^{43} - 180 q^{45}+ \cdots + 3544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2100, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(700, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1050, [\chi])\)\(^{\oplus 2}\)