Properties

Label 2106.2.l
Level $2106$
Weight $2$
Character orbit 2106.l
Rep. character $\chi_{2106}(1135,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $112$
Sturm bound $756$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.l (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(756\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2106, [\chi])\).

Total New Old
Modular forms 804 112 692
Cusp forms 708 112 596
Eisenstein series 96 0 96

Trace form

\( 112 q + 56 q^{4} + 6 q^{10} + 2 q^{13} - 56 q^{16} - 12 q^{19} - 100 q^{25} - 6 q^{37} + 12 q^{40} - 4 q^{43} + 64 q^{49} - 8 q^{52} - 18 q^{58} - 14 q^{61} - 112 q^{64} - 60 q^{67} - 12 q^{76} + 40 q^{79}+ \cdots - 84 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2106, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2106, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2106, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(351, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(702, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1053, [\chi])\)\(^{\oplus 2}\)