Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M4(Γ0(2116)).
|
Total |
New |
Old |
Modular forms
| 864 |
126 |
738 |
Cusp forms
| 792 |
126 |
666 |
Eisenstein series
| 72 |
0 |
72 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 23 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 222 | 0 | 222 | | 198 | 0 | 198 | | 24 | 0 | 24 |
+ | − | − | | 216 | 0 | 216 | | 192 | 0 | 192 | | 24 | 0 | 24 |
− | + | − | | 210 | 60 | 150 | | 198 | 60 | 138 | | 12 | 0 | 12 |
− | − | + | | 216 | 66 | 150 | | 204 | 66 | 138 | | 12 | 0 | 12 |
Plus space | + | | 438 | 66 | 372 | | 402 | 66 | 336 | | 36 | 0 | 36 |
Minus space | − | | 426 | 60 | 366 | | 390 | 60 | 330 | | 36 | 0 | 36 |
Decomposition of S4new(Γ0(2116)) into newform subspaces
Decomposition of S4old(Γ0(2116)) into lower level spaces