Properties

Label 2116.4.a
Level 21162116
Weight 44
Character orbit 2116.a
Rep. character χ2116(1,)\chi_{2116}(1,\cdot)
Character field Q\Q
Dimension 126126
Newform subspaces 1010
Sturm bound 11041104
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2116=22232 2116 = 2^{2} \cdot 23^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2116.a (trivial)
Character field: Q\Q
Newform subspaces: 10 10
Sturm bound: 11041104
Trace bound: 55
Distinguishing TpT_p: 33, 55

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(2116))M_{4}(\Gamma_0(2116)).

Total New Old
Modular forms 864 126 738
Cusp forms 792 126 666
Eisenstein series 72 0 72

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

222323FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++22222200222222198198001981982424002424
++--21621600216216192192001921922424002424
-++-210210606015015019819860601381381212001212
--++216216666615015020420466661381381212001212
Plus space++438438666637237240240266663363363636003636
Minus space-426426606036636639039060603303303636003636

Trace form

126q4q3+10q5+4q7+1138q9+58q1156q13+128q15+116q1726q19100q21+3222q25424q27236q29+172q31+300q33+60q35++4674q99+O(q100) 126 q - 4 q^{3} + 10 q^{5} + 4 q^{7} + 1138 q^{9} + 58 q^{11} - 56 q^{13} + 128 q^{15} + 116 q^{17} - 26 q^{19} - 100 q^{21} + 3222 q^{25} - 424 q^{27} - 236 q^{29} + 172 q^{31} + 300 q^{33} + 60 q^{35}+ \cdots + 4674 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(2116))S_{4}^{\mathrm{new}}(\Gamma_0(2116)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 23
2116.4.a.a 2116.a 1.a 33 124.848124.848 3.3.1229.1 None 92.4.a.a 00 4-4 1010 4646 - - SU(2)\mathrm{SU}(2) q+(1β2)q3+(4+β13β2)q5+q+(-1-\beta _{2})q^{3}+(4+\beta _{1}-3\beta _{2})q^{5}+\cdots
2116.4.a.b 2116.a 1.a 33 124.848124.848 3.3.28669.1 None 92.4.a.b 00 88 00 42-42 - - SU(2)\mathrm{SU}(2) q+(3+β2)q3β1q5+(14+β1+)q7+q+(3+\beta _{2})q^{3}-\beta _{1}q^{5}+(-14+\beta _{1}+\cdots)q^{7}+\cdots
2116.4.a.c 2116.a 1.a 66 124.848124.848 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 2116.4.a.c 00 11 5-5 20-20 - - SU(2)\mathrm{SU}(2) q+β1q3+(1+β1+β3)q5+(3+)q7+q+\beta _{1}q^{3}+(-1+\beta _{1}+\beta _{3})q^{5}+(-3+\cdots)q^{7}+\cdots
2116.4.a.d 2116.a 1.a 66 124.848124.848 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 2116.4.a.c 00 11 55 2020 - - SU(2)\mathrm{SU}(2) q+β1q3+(1β1β3)q5+(3β1+)q7+q+\beta _{1}q^{3}+(1-\beta _{1}-\beta _{3})q^{5}+(3-\beta _{1}+\cdots)q^{7}+\cdots
2116.4.a.e 2116.a 1.a 66 124.848124.848 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 2116.4.a.e 00 88 00 00 - - SU(2)\mathrm{SU}(2) q+(1β3)q3+β2q5+(β1+β2+)q7+q+(1-\beta _{3})q^{3}+\beta _{2}q^{5}+(-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots
2116.4.a.f 2116.a 1.a 1010 124.848124.848 Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots) None 2116.4.a.f 00 12-12 00 00 - ++ SU(2)\mathrm{SU}(2) q+(1β2)q3+(β1+β3)q5+(3β1+)q7+q+(-1-\beta _{2})q^{3}+(-\beta _{1}+\beta _{3})q^{5}+(3\beta _{1}+\cdots)q^{7}+\cdots
2116.4.a.g 2116.a 1.a 1212 124.848124.848 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 2116.4.a.g 00 2-2 00 00 - - SU(2)\mathrm{SU}(2) qβ6q3+(β1+β8)q5+(β1+β7+)q7+q-\beta _{6}q^{3}+(\beta _{1}+\beta _{8})q^{5}+(-\beta _{1}+\beta _{7}+\cdots)q^{7}+\cdots
2116.4.a.h 2116.a 1.a 2020 124.848124.848 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 2116.4.a.h 00 00 00 00 - ++ SU(2)\mathrm{SU}(2) q+β5q3+β11q5+(β12+β15)q7+q+\beta _{5}q^{3}+\beta _{11}q^{5}+(\beta _{12}+\beta _{15})q^{7}+\cdots
2116.4.a.i 2116.a 1.a 3030 124.848124.848 None 92.4.e.a 00 2-2 50-50 22 - ++ SU(2)\mathrm{SU}(2)
2116.4.a.j 2116.a 1.a 3030 124.848124.848 None 92.4.e.a 00 2-2 5050 2-2 - - SU(2)\mathrm{SU}(2)

Decomposition of S4old(Γ0(2116))S_{4}^{\mathrm{old}}(\Gamma_0(2116)) into lower level spaces

S4old(Γ0(2116)) S_{4}^{\mathrm{old}}(\Gamma_0(2116)) \simeq S4new(Γ0(23))S_{4}^{\mathrm{new}}(\Gamma_0(23))6^{\oplus 6}\oplusS4new(Γ0(46))S_{4}^{\mathrm{new}}(\Gamma_0(46))4^{\oplus 4}\oplusS4new(Γ0(92))S_{4}^{\mathrm{new}}(\Gamma_0(92))2^{\oplus 2}\oplusS4new(Γ0(529))S_{4}^{\mathrm{new}}(\Gamma_0(529))3^{\oplus 3}\oplusS4new(Γ0(1058))S_{4}^{\mathrm{new}}(\Gamma_0(1058))2^{\oplus 2}