Properties

Label 2116.4.a
Level $2116$
Weight $4$
Character orbit 2116.a
Rep. character $\chi_{2116}(1,\cdot)$
Character field $\Q$
Dimension $126$
Newform subspaces $10$
Sturm bound $1104$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2116 = 2^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2116.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(1104\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2116))\).

Total New Old
Modular forms 864 126 738
Cusp forms 792 126 666
Eisenstein series 72 0 72

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(23\)FrickeDim
\(-\)\(+\)\(-\)\(60\)
\(-\)\(-\)\(+\)\(66\)
Plus space\(+\)\(66\)
Minus space\(-\)\(60\)

Trace form

\( 126 q - 4 q^{3} + 10 q^{5} + 4 q^{7} + 1138 q^{9} + 58 q^{11} - 56 q^{13} + 128 q^{15} + 116 q^{17} - 26 q^{19} - 100 q^{21} + 3222 q^{25} - 424 q^{27} - 236 q^{29} + 172 q^{31} + 300 q^{33} + 60 q^{35}+ \cdots + 4674 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2116))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 23
2116.4.a.a 2116.a 1.a $3$ $124.848$ 3.3.1229.1 None 92.4.a.a \(0\) \(-4\) \(10\) \(46\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{3}+(4+\beta _{1}-3\beta _{2})q^{5}+\cdots\)
2116.4.a.b 2116.a 1.a $3$ $124.848$ 3.3.28669.1 None 92.4.a.b \(0\) \(8\) \(0\) \(-42\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(3+\beta _{2})q^{3}-\beta _{1}q^{5}+(-14+\beta _{1}+\cdots)q^{7}+\cdots\)
2116.4.a.c 2116.a 1.a $6$ $124.848$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 2116.4.a.c \(0\) \(1\) \(-5\) \(-20\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1+\beta _{1}+\beta _{3})q^{5}+(-3+\cdots)q^{7}+\cdots\)
2116.4.a.d 2116.a 1.a $6$ $124.848$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 2116.4.a.c \(0\) \(1\) \(5\) \(20\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(1-\beta _{1}-\beta _{3})q^{5}+(3-\beta _{1}+\cdots)q^{7}+\cdots\)
2116.4.a.e 2116.a 1.a $6$ $124.848$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 2116.4.a.e \(0\) \(8\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{3})q^{3}+\beta _{2}q^{5}+(-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
2116.4.a.f 2116.a 1.a $10$ $124.848$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 2116.4.a.f \(0\) \(-12\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{3}+(-\beta _{1}+\beta _{3})q^{5}+(3\beta _{1}+\cdots)q^{7}+\cdots\)
2116.4.a.g 2116.a 1.a $12$ $124.848$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2116.4.a.g \(0\) \(-2\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{6}q^{3}+(\beta _{1}+\beta _{8})q^{5}+(-\beta _{1}+\beta _{7}+\cdots)q^{7}+\cdots\)
2116.4.a.h 2116.a 1.a $20$ $124.848$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 2116.4.a.h \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{5}q^{3}+\beta _{11}q^{5}+(\beta _{12}+\beta _{15})q^{7}+\cdots\)
2116.4.a.i 2116.a 1.a $30$ $124.848$ None 92.4.e.a \(0\) \(-2\) \(-50\) \(2\) $-$ $+$ $\mathrm{SU}(2)$
2116.4.a.j 2116.a 1.a $30$ $124.848$ None 92.4.e.a \(0\) \(-2\) \(50\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2116))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(2116)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\)\(^{\oplus 2}\)