Properties

Label 2128.2.bn
Level $2128$
Weight $2$
Character orbit 2128.bn
Rep. character $\chi_{2128}(159,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $160$
Sturm bound $640$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2128 = 2^{4} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2128.bn (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 532 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(640\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2128, [\chi])\).

Total New Old
Modular forms 664 160 504
Cusp forms 616 160 456
Eisenstein series 48 0 48

Trace form

\( 160 q - 80 q^{9} - 12 q^{13} - 4 q^{21} - 160 q^{25} + 4 q^{37} - 36 q^{41} - 20 q^{49} + 24 q^{53} - 28 q^{57} + 36 q^{61} + 48 q^{65} - 12 q^{73} + 24 q^{77} - 32 q^{81} - 12 q^{85} - 88 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2128, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2128, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2128, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 3}\)