Properties

Label 2128.2.cx
Level $2128$
Weight $2$
Character orbit 2128.cx
Rep. character $\chi_{2128}(183,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $0$
Newform subspaces $0$
Sturm bound $640$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2128 = 2^{4} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2128.cx (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 0 \)
Sturm bound: \(640\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2128, [\chi])\).

Total New Old
Modular forms 656 0 656
Cusp forms 624 0 624
Eisenstein series 32 0 32

Decomposition of \(S_{2}^{\mathrm{old}}(2128, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2128, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1064, [\chi])\)\(^{\oplus 2}\)