Properties

Label 2128.2.ea
Level $2128$
Weight $2$
Character orbit 2128.ea
Rep. character $\chi_{2128}(715,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $960$
Sturm bound $640$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2128 = 2^{4} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2128.ea (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 304 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(640\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2128, [\chi])\).

Total New Old
Modular forms 1296 960 336
Cusp forms 1264 960 304
Eisenstein series 32 0 32

Trace form

\( 960 q - 24 q^{10} - 8 q^{16} + 16 q^{19} - 56 q^{20} - 16 q^{24} - 104 q^{26} + 112 q^{30} + 60 q^{32} - 60 q^{34} - 32 q^{36} + 84 q^{38} - 60 q^{40} - 56 q^{44} + 960 q^{49} + 48 q^{51} - 96 q^{52} - 32 q^{54}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2128, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2128, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2128, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 2}\)